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Dynamic texture (DT) widely exists in various social video media. Therefore, DT modeling
and synthesis plays an important role in social media analyzing and processing. In this
paper, we propose a Bayesian-based nonlinear dynamic texture modeling method for
dynamic texture synthesis. To capture the non-stationary distribution of DT, we utilize the
Gaussian process latent variable model for dimensional reduction. Furthermore, we
design a multi-kernel dynamic system for the latent dynamic behavior modeling. In our
model, we do not make strong assumption on the nonlinear function. Instead, our model
automatically constructs a suitable nonlinear kernel for dynamic modeling and therefore
is capable of fitting various types of dynamics. We evaluate the effectiveness our methods
on the DynTex database and compared with representative DT synthesis method.
Experimental results show that our method can achieve synthesis results with higher
visual quality.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the amount of social media grows
exponentially on Internet. Social media takes many differ-
ent forms including texts, photos, audios, videos. Among
them, video social media holds a high percentage and keeps
growing due to its high information-capacity. Dynamic
textures (DT) is a sample from a homogeneous stochastic
process defined over space and time [1] and widely exists in
various video social media. In many video applications, such
as video compression [2], film and video rendering [3], and
ics and Information
Technology, Wuhan,

.

Dynamic texture mod
), http://dx.doi.org/10.
animation [4], it is required to model and synthesize an
artificial DT sequence with certain spatial appearance and
temporal behavior. Thus, the research of DT synthesis has
attracted increasing attentions in recent decades.

Existing DT modeling and synthesis methods can be
summarized into three major categories: physics-based
methods, sampling based methods and learning based
methods.

(1) Physics based methods synthesize DT by modeling
the physical mechanism of some specific phenomena, such
as flames of fire [5], sea wave [6]. The advantage of these
methods is the capability of generating impressive synth-
esis results. However, these methods have high specificity.
The model for fire cannot be used for water or smoke.
Meanwhile, it is difficult to synthesize natural scenes with
eling and synthesis using multi-kernel Gaussian process
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them. Furthermore, their computation cost is extremely
expensive.

(2) Sampling based methods reassemble the sequences
of frames taken from the original video to form a longer DT
sequence, ensuring that transitions between consecutive
blocks are not noticeable. Meanwhile, some smoothing
techniques, such as morphing [7] or diffeomorphic growth
[8], are required to diminish discontinuities between
blocks. These methods require storage large amount of the
original frames (often thousands of video frames) and
cannot generate a texture frame unseen.

(3) Learning based methods utilize the strong correla-
tions that exist among neighboring pixels in space-time,
and learn their parameters from any trainee dynamic
texture. Compared with other two types of methods,
learning based methods are much more flexible and cap-
able of synthesize a visual approximation of almost any
learned DT sequence. Meanwhile, learning based methods
only require few memory space for DT synthesize and can
achieve high data-compression ratio. Moreover, these
methods can also be used for other applications, such as
segmentation [9], recognition [10], and editing [11].

Thus, we focus on the learning based method for DT
synthesis. In [12–14], the authors use autoregressive-based
model for DT synthesis. In these methods, the interaction
of pixels within a local causal neighborhood over both
space and time are modeled by expressing each pixel in
the sequence as a linear combination of its spatial and
temporal neighbors. The autoregressive-based model is
able to synthesis acceptable DT sequences, but it can not
represent non-stationary DT, such as rotations and
expansions. To overcome this problem, Doretto et al. pro-
posed the linear dynamic system (LDS) for DT synthesis
[15]. In LDS, each video frame is unfolded into a column
vector and constitutes a point that follows a trajectory as
time evolves. Thus, the key point the LDS is finding an
appropriate subspace to describe this trajectory and then
identifying the trajectory using methods of dynamical
system theory. Later, some LDS-based methods have been
proposed to further improve the performance [16–19].
Compared with the autoregressive-based, LDS methods
can model unstable DT sequence. However, LDS-based
methods achieve good synthesis results only for an oscil-
latory system [1]. In other situations, they have a tendency
toward smoothing the motion and decreasing visual
quality over time.

There are two reasons that cause such drawback of
LDS-based methods. First, the non-stationary DT contain
different data modalities in their appearance distribution
which cannot be captured by a linear-dimensionality-
reduction scheme. Second, it is difficult for linear dyna-
mic system to model the nonlinear trajectory in the sub-
space, that governs the evolvement of DT sequence.
Motivated by the benefits coming from the multi-view
learning [20–25], where performance improvements can
be observed when the samples are represented by differ-
ent feature sets or ”views”, it is necessary to design a
nonlinear dynamic system model for DT modeling from
the respect of multi-view.

In this paper, we propose a multi-kernel nonlinear
dynamic model for DT modeling. Different from existing
Please cite this article as: Z. Zhu, et al., Dynamic texture mod
dynamic model, Signal Processing (2015), http://dx.doi.org/10.
research, we adopt the Bayesian approach for subspace
learning and dynamical system modeling. First, we use the
Gaussian process latent variable model (GPLVM) [26]. By
adopting nonlinear kernels, such as RBF kernel, GPLVM is
capable of capturing the non-stationary distribution of DT
sequence through the nonlinear dimensionality reduction
process and synthesis the DT frames using mean predic-
tion. Furthermore, to modeling the complex nonlinear
trajectory of different DT sequences, we design a multi-
kernel nonlinear dynamic system. Compared with other
predesigned model [12,15,16], our model is capable of
constructing the most suitable nonlinear kernel to fit the
given DT data automatically.

The rest of the paper is organized as follows. In Section 2,
the related work of learning based method for DT synthesis
is briefly introduced. In Section 3, we propose the multi-
kernel Gaussian process dynamic model for DT modeling.
The learning and synthesis algorithms for multi-kernel
Gaussian process dynamic model are given in Section 4.
Section 5 presents the experimental results. Conclusions are
drawn in Section 6.
2. Related work

In the learning based methods, the DT sequence is
regarded as a high-dimensional time series. The modeling
of high-dimensional time series usually contains two
essential stages, dimensionality reduction and dynamical
modeling. Thus, the general model for DT modeling can be
expressed as:

xtþ1 ¼ f ðxt ;AÞþnx;t ð1Þ

yt ¼ gðxt ;BÞþny;t ð2Þ
where ytARD denotes the column vector unfolded from
the frame at time t of DT sequence. Normally, the dimen-
sion D is very large. xtARQ (with Q⪡D) denotes the latent
variable from the subspace which govern the dynamic
behavior of DT sequence. g:RD-RQ represents the
dimensionality reduction function. f :RQ-RQ represents
the dynamic function. nx;t and ny;t denote the noise. Fig. 1
shows the graph model of DT model represented by
(1) and (2).

As for the dimensionality reduction function gð�Þ, most
of LDS-based DT modeling methods adopted linear algo-
rithm, such as PCA, for dimensionality reduction [15,17,18].
The linear dimensionality reduction algorithms are
straightforward to implement and efficient. However,
these algorithms cannot capture complex distribution of
most DT sequences. Although there are some nonlinear
dimensionality reduction algorithms, they produce either
irreversible mapping [27] or several different coordinate
spaces [28], which are not suitable for DT modeling and
synthesis. Thus, it is desired to find a nonlinear dimen-
sionality reduction algorithm which provides reversible
mapping and uniformed subspace.

As for the dynamic function f ð�Þ, early LDS methods
used linear system for DT modeling [15,29]. However, the
dynamic behavior of most DT sequence is not linear and
cannot be modeled using linear system. To overcome this
eling and synthesis using multi-kernel Gaussian process
1016/j.sigpro.2015.10.025i

http://dx.doi.org/10.1016/j.sigpro.2015.10.025
http://dx.doi.org/10.1016/j.sigpro.2015.10.025
http://dx.doi.org/10.1016/j.sigpro.2015.10.025


x1 x2 x3 x4

y1 y2 y3 y4

B

A

Fig. 1. The graph model of the general dynamic model for DT. A and B
denotes the parameters for function f and g respectively.
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problem, the switching linear system [30] or piecewise
linear system [31] are adopted in LDS for nonlinear
dynamic modeling. However, these models are designed
based on strong assumption of the dynamic behavior and
thus are only suitable for specific types of dynamic texture.
In this paper, we look forward a more flexible model
which is capable of fitting most DT.
3. Multi-kernel Gaussian process dynamic model

To capture the complex distribution of DT sequence, it
is desired to design a nonlinear latent mapping function
gð�Þ for dimensionality reduction. Different from existing
research, we do not want to make strong assumption on
the functional form of gð�Þ. Instead we would like to infer it
in a fully Bayesian non-parametric fashion using Gaussian
Process [32]. Therefore, we assume that the dynamic tex-
ture sequence yi is a multivariate Gaussian process
indexed by xi, and we have:

pðY X; θj Þ ¼ ∏
N

t ¼ 1
p yt xt ; θj Þ�

¼ 1
ð2πÞDN=2jKY jD=2

exp �1
2
tr K �1

Y YYT
� �� �

ð3Þ

where Y ¼ fy1; y2;…; yNg denotes the observed DT
sequence and X ¼ fx1; x2;…; xNg denotes latent variable. KY

is the kernel matrix which determines the properties of
the latent mapping gð�Þ. The elements of kernel matrix are
generated by a kernel mapping ðKY Þi;j ¼ kY ðxi; xjÞ. To
achieve nonlinear mapping, we use the squared expo-
nential covariance function:

kY xi; xj
� �¼ θ1 exp �θ2

2
xi�xj
� �ðxi�xjÞT

� �
þθ3δxi ;xj ð4Þ

where θ¼ fθ1; θ2; θ3g denotes hyperparameter for kernel
mapping kY and δxi ;xj denotes the Kronecker delta.

As for the dynamic function f ð�Þ, we assume that it can
be modeled using first-order Markov model based on
Gaussian process. In this model, the kernel function used
in Gaussian process determines the properties of the
dynamic behavior of the latent variables.

There are many kernel functions successfully used in
practice, such as linear kernel function, squared-exponential
kernel function, and periodic kernel function. For instance,
the linear kernel function gives rise to a linear process, while
the squared-exponential kernel function yields a nonlinear,
smooth and non-Markovian process [33]. The periodic ker-
nel function is used when the data exhibit strong periodicity
[32].
Please cite this article as: Z. Zhu, et al., Dynamic texture mod
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However, as for dynamic texture modeling, the latent
dynamic behavior vary greatly among different types of
dynamic texture. Thus, it is very difficult to design the
most suitable kernel for a dynamic texture empirically. To
overcome this problem, we propose a multi-kernel
dynamic model for dynamic texture modeling:

pðX λ;Wj Þ ¼ p x1ð Þ ∏
N

t ¼ 2
p xt xt�1; λ;Wj Þð

¼ p x1ð Þ 1
ð2πÞQ ðN�1Þ=2jKX jQ=2

exp �1
2
tr K �1

X X2:NX
T
2:N

� �� �

ð5Þ
where KX denotes the constructed kernel matrix gener-
ated by the multi-kernel function:

kXðxi; xjÞ ¼
XM
l ¼ 1

wlklðxi; xjÞþwδδxi ;xj ; i; j¼ 1;2;…;N�1 ð6Þ

where kl; l¼ 1;2;…;M denotes different types of kernel
functions. W ¼ fwljl¼ 1;2;…;Mg is the weights for all
kernel functions. For all wl, we assume that wl40 andP

lwl ¼ 1. λ¼ λljl¼ 1;…;M is the hyperparameters for the
kernels. Since the parameters for each kernel maybe dif-
ferent, the parameters for each kernel is defined as
λl ¼ fðλlÞ1;…; ðλlÞMl

g and Ml is the number of parameters for
kernel kl.

Finally, to discourage overfitting, we can assume that
there are some priors on the hyperparameters as [33]:

pðθÞp∏
i
θ�1
i and pðλÞp∏

i;j
ðλiÞ�1

j ð7Þ

Based on the latent mapping (3), the latent dynamic model
(5) and the prior (7), we can obtain the generative model
for dynamic texture:

pðX;Y ; θ; λjWÞ ¼ pðY jX; θÞpðXjθ;WÞpðθÞpðλÞ ð8Þ
It should be noted that the latent dynamic of MK-GPDM

can be easily extended into higher-order Markov model.
While using first order Markov model, we assume that
the dynamic texture frame is only dependent on the one past
frame and ignore the correlation between non-neighboring
frame. With higher order Markov model, it is possible for us
to predict the future frame with more information.

We take second-order Markov chain as an example. The
kernel function of the latent dynamic model is then
defined as:

KXð½xi; xi�1�; ½xj; xj�1�Þ ¼
XM
l ¼ 1

wlKlð½xi; xi�1�; ½xj; xj�1�Þ

þwδδð½xi ;xi� 1 �;½xj ;xj� 1 �Þ ð9Þ

From (9), we can find that the correlation among four
frames is considered. However, the number of parameters
we need to estimate grows exponentially with the order
and the computation cost increases significantly.
4. MK-GPDM learning and prediction

To synthesis new DT sequence based on given training
samples, we need to estimate all the parameters fX; θ; λ;
Wg in model (8) and then predict the value of observing
eling and synthesis using multi-kernel Gaussian process
1016/j.sigpro.2015.10.025i
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data yt with given time index t. Thus, the learning algo-
rithm and prediction algorithm will be introduced in this
section.

4.1. MK-GPDM learning with MAP estimation

Our objective is to model the dynamic texture video
sequence. Thus we need to optimize the latent variable X,
the hyperparameters fθ; λg and the weights for different
kernels W using the given video data Y . Here, we design a
two-step optimization algorithm to learn MK-GPDM.

Step 1: We estimate the latent variable X and hyper-
parameters fθ; λg using the maximum a posteriori (MAP)
algorithm while the kernel weights W fixed.

According to the Bayesian inference, the posteriori
distribution is

pðX; θ; λjYÞppðY jX; θ; λÞpðX; θ; λÞ ¼ pðY jX; θÞpðXjθÞpðθÞpðλÞ
ð10Þ

Since W is fixed in the first step, we consider it as a
constant rather than a parameter for the posteriori
distribution.

To maximize the posteriori distribution, it is equivalent
to minimize the negative logarithm of (10). Thus we have:

L¼ � ln pðX; θ; λ Yj Þ ¼D
2
ln jKY jþ

1
2
tr K �1

Y YY �1
� �

þQ
2
ln jKX jþ

1
2
tr K �1

X X2:NX
T
2:N

� �
þ
X
i

θiþ
X
i;j

ðλiÞjþC

ð11Þ

where C denotes the constant part in L. We minimize L
with respect to X, θ, λ numerically using the scaled con-
jugate gradients optimizer.

Step 2: We estimate the kernel weights W while the
latent variable X and hyperparameters fθ; λg are fixed.
According to (5) and (6), the kernel weights W only rela-
ted to KX. Therefore, the optimization problem can be
Fig. 2. Sample frames from the DynTex database (left-to-right, top-to-bottom): r
revolving bicycle wheel, fountain, controlled fire, swinging pendant lamp.

Please cite this article as: Z. Zhu, et al., Dynamic texture mod
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formulated as:

minimize
Q
2
ln K �1

X þ1
2
tr K �1

X X2:NX
T
2:N

� �
þαJW J2

����
���� ð12Þ

with respect to wiZ0

subject to
X
i

wi ¼ 1

where K �1
X is defined as (6). α is a predefined positive

trade-off parameter between model simplicity and the
negative logarithm posteriori distribution. Since it is dif-
ficult to obtain the close-form solution, instead we use
gradient descent method to optimize (12) with the respect
of W .

Based on the Step 1 and Step 2 described above, the
optimization of model (8) can be summarized by Algo-
rithm 1.

Algorithm 1. Leaning MK-GPDM.
1 Input: DT data Y
2 Output: The latent variable X, the hyperparameters fθ; λg and the

kernel weights W .
3 Initialize X with PCA on Y with Q dimensions. Initialize the fθ; λg

and W .
4 For i¼1 to I do
5 Fix W , optimize (11) with respect to fX; θ; λg using SCG for J1

iterations.
6 Fix fX; θ; λg, optimize (12) with respect to W using gradient

descent method for J2 iterations.
7 For any wio0, wi ( 0.
8 Normalize W such that

P
iwi ¼ 1.

9 End For

4.2. MK-GPDM prediction

For many applications of DT synthesis, it is desirable to
generate new DT frames efficiently. Therefore we adopt a
simple online method, named as mean-prediction, for
synthesis new DT frames. In mean-prediction, we generate
the latent variable xt conditioned on xt�1 based on the
evolving windmill, rotating whirligig, ascending escalator, warning lamps,

eling and synthesis using multi-kernel Gaussian process
1016/j.sigpro.2015.10.025i
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first-order Markov model using the Gaussian prediction:

xt �N μXðxt�1Þ; σ2Xðxt�1ÞI
� � ð13Þ

where

μXðxÞ ¼ XT
2:NK

�1
X kXðxÞ ð14Þ

σ2XðxÞ ¼ kXðx; xÞ�kXðxÞTK �1
X kXðxÞ ð15Þ

where kXð�; �Þ is the multi-kernel function defined by (6).
kXðxÞ is a vector containing kXðx; xiÞ in the i-th entry. In the
prediction process, the latent variable xt is set to be the
mean point given by the previous time index as
xt ¼ μXðxt�1Þ. Similarly, the new DT sequence is generated
by yt ¼ μY ðxtÞ.
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Fig. 4. The kernel weights of MK-GPDM using “64ad410” as training
sample.
5. Experiments

In this section, we evaluate the proposed synthesis
method on the DynTex database. The some representative
learning based DT synthesis methods are evaluated for
comparison.

DynTex database [34] is a diverse collection of high
quality dynamic texture videos. The latest version contains
650 sequences of dynamic textures, mostly in everyday
surroundings. It serves as a standard database for different
Training DT Se

LDS

Synthesis Methods

Frame 50 Frame 100 Frame

MK-GPDM

Frame 1 Frame 100 Frame 20

GPDM

FFT-LDS

HOSVD

Fig. 3. Synthesis results of sample “6

Please cite this article as: Z. Zhu, et al., Dynamic texture mod
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dynamic texture research areas, such as video texture
recognition, video texture segmentation and video texture
synthesis. This database contains the so-called golden set
of high-quality. Fig. 2 shows some sample frames from the
data set.

For evaluation, we test the proposed synthesis method
on 4 types of dynamic textures which belong to natural
scene. Due to the limitation of computer memory, all testing
videos are resized to a resolution of 160�120. In the
quence

DT Sequence

 150 Frame 200 Frame 250

0 Frame 300 Frame 400 Frame 500

4ad410” from dyntex database.

eling and synthesis using multi-kernel Gaussian process
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Fig. 5. Synthesis results of sample “54ac210” from dyntex database.
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Fig. 6. The kernel weights of MK-GPDM using “54ac210” as training
sample.
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training stage, we use 250 frames (namely 10 s approxi-
mately) as the training DT sample for each DT sequence. In
the synthesizing stage, we use the 250th frame of the
training sample as the initial frame and generate a DT
sequence with 500 frames. All the training samples are
converted gray video for convenience of training and syn-
thesizing. We compare our method with the LDS [15], the
FFT-LDS [19], High Order-SVD (HOSVD for short) [16] and
Please cite this article as: Z. Zhu, et al., Dynamic texture mod
dynamic model, Signal Processing (2015), http://dx.doi.org/10.
GPDM [33]. The experimental results are shown Figs. 3–9.
To demonstrate the dynamic behavior of synthesized DT
sequence, we also generate video sequences, which con-
tains the original DT sequence, the synthesized results of
LDS, FFT-LDS, HOSVD, GPDM and our methods, for com-
parison. All the source code and the synthesized video
sequences are available from https://github.com/zhuziqi/
Dynamic_Texture_Modeling_using_MKGPDM.

As for the LDS model, we utilize the code provided by
Doretto from [15]. As for HOSVD, we utilize the code
provided by Costantini from [16]. As for GPDM, we utilize
the code provided by Jack from [33]. The dimensionality of
the latent subspace is set to be 3 as it is recommend in
[33]. As for MK-GPDM, we utilize 6 different types of
kernels, including the linear (Lin for short) kernel, the RBF
kernel, the polynomial (Ploy for short) kernel, the rational
quadratic (Ratquad for short) kernel, the Multilayer Per-
ceptron (MLP for short) kernel and the Matern kernel. The
dimensionality of the latent subspace is set to be 20.

Fig. 3 shows the synthesis results of a DT sequence
containing actinia. Since the training data is normalized
before the training process, the gray-scale of all synthesis
results is different from the original DT sequence. In our
experiments, we mainly focus on the details of DT frames
and smoothness of the synthesized DT sequence. As shown
eling and synthesis using multi-kernel Gaussian process
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in the figure, LDS model is capable of capture the general
shape of the actinia, but the details of actinia's tentacle is
not clear. The GPDM is capable of capture more image
details. However, the global gray-scale is not stable during
the synthesis period. Compared with LDS and GPDM, MK-
GPDM is capable of capturing most details from training
samples and the dynamic behavior is also very smooth.
Fig. 4 shows the kernel weights for all 6 different kernels
used in MK-GPDM. Among them, the RBF kernel plays the
most important role in the multiple dynamic kernel
model, but the contribution of the Linear kernel and
Matern kernel is quite limited.

Fig. 5 shows the synthesis result using DT sequence
“64ad410” as training sample. From the figure and video,
we can find that both LDS and GPDM failed to capture the
dynamic behavior of the waving grass. However, the
synthesis DT sequence of our methods contains crystal
details of the grass and waving process is also smooth and
natural. The weights of different kernels are shown in
Fig. 6. Different from previous sample, Matern kernel
plays a secondly important role in MK-GPDM. Similar
results can also be found in the synthesis results shown in
Figs. 5 and 6.
Please cite this article as: Z. Zhu, et al., Dynamic texture mod
dynamic model, Signal Processing (2015), http://dx.doi.org/10.
The sample “54ab110” is a DT sequence contains the sea
wave. The dynamic behavior of water is much more complex
then previous 3 types of DT. As it is shown in Fig. 9, the LDS
model can not capture complex dynamic behavior at all. As
for GPDM, the quality of synthesized video degenerated
quickly. However, by using the proposed MK-GPDM, we
obtain a promise synthesis results with smooth transfor-
eling and synthesis using multi-kernel Gaussian process
1016/j.sigpro.2015.10.025i
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mation between frames and high quality of DT frames.
According to Fig. 10, we can find that the Matern kernel
contribute almost as equal as the RBF kernel MK-GPDM.
6. Conclusions

In this paper, we proposed a multi-kernel Gaussian pro-
cess dynamic model (MK-GPDM) for dynamic texture
Please cite this article as: Z. Zhu, et al., Dynamic texture mod
dynamic model, Signal Processing (2015), http://dx.doi.org/10.
modeling and synthesis. First, to capture the non-stationary
distribution of the DT sequence, we utilize the method of
Gaussian process latent variable model for nonlinear
dimensional reduction in MK-GPDM. Second, we design a
multi-kernel dynamic system for the dynamic behavior
modeling of latent variable in subspace. Different from
existing methods, our approach is capable of construct the
most suitable nonlinear kernel for nonlinear dynamic mod-
eling automatically, and therefore is much more flexible for
DT modeling. We evaluate the effectiveness our method on
the DynTex database and compared with some representa-
tive DT synthesis methods. Experimental results show that
our method can achieve higher quality synthesis results.
Acknowledgments

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 61272203,
and Grant 61571205, in part by the International Scientific
and Technological Cooperation Program of China under
Grant 2011DFA12180, in part by the Hubei Province Sci-
ence and Technology Support Program under Grant
2013BAA120, and in part by the Shenzhen Research
Council under Grant JCYJ20140819154343378.
eling and synthesis using multi-kernel Gaussian process
1016/j.sigpro.2015.10.025i

http://dx.doi.org/10.1016/j.sigpro.2015.10.025
http://dx.doi.org/10.1016/j.sigpro.2015.10.025
http://dx.doi.org/10.1016/j.sigpro.2015.10.025


Z. Zhu et al. / Signal Processing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
Appendix A. The gradient of L with the respect to
latent variables and hyperparamters:

To estimate the hyperparameters and the latent vari-
able, we need to calculate the gradient of L with the
respect to X and fθ; λg and then use the SCG algorithm. In
practice, we use the SCG from the NETLAB matlab toolbox
which can be downloaded from http://www.aston.ac.uk/
eas/research/groups/ncrg/resources/netlab/downloads/.

The gradient of L with the respect to X can be found
through combining
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