

γ -NN: Algorithm

Algorithm 1: Classification of a new example with γk -NN

Input : a query **x** to be classified, a set of labeled samples $S = S_+ \cup S_-$, a number of neighbors k, a positive real value γ , a distance function d **Output:** the predicted label of **x** $\mathcal{NN}^-, \mathcal{D}^- \leftarrow nn(k, \mathbf{x}, S_-)$ // nearest negative neighbors with their distances $\mathcal{NN}^+, \mathcal{D}^+ \leftarrow nn(k, \mathbf{x}, S_+)$ // nearest positive neighbors with their distances $\mathcal{D}^+ \leftarrow \gamma \cdot \mathcal{D}^+$

 $\mathcal{NN}_{\gamma} \leftarrow firstK\left(k, sortedMerge((\mathcal{NN}^{-}, \mathcal{D}^{-}), (\mathcal{NN}^{+}, \mathcal{D}^{+}))\right)$

 $\begin{array}{ll} y \leftarrow + \mbox{ if } \left| \mathcal{N} \mathcal{N}_{\gamma} \cap \mathcal{N} \mathcal{N}^+ \right| \geq \frac{k}{2} \mbox{ else } - & // \mbox{ majority vote based on } \mathcal{N} \mathcal{N}_{\gamma} \\ \mbox{ return } y \end{array}$

- Trivial to implement
- Same complexity as k-NN (at most twice)
- Training
 - $\circ~$ none, as k-NN $\circ~\gamma$ is selected by (cross-)validation
 - (on the measure of interest)

SLEIGHT Science Event#6 | Rémi Emonet | 2021-07-06 | 31 / 92 (3/3

Results on public datasets (F-measure) DATASETS 3-NN DUPk-NN wk-NN CWk-NN LMNN γk-NN BALANCE 0.954(0.017) 0.954(0.017) 0.957(0.017) 0.961(0.010) 0.963(0.012) 0.954(0.029)

AUTOMPG	0.808(0.077)	0.826(0.033)	0.810(0.076)	0.815(0.053)	0.827(0.054)	0.831(0.025)
IONO	0.752(0.653)	0.859(0.021)	0.756(0.060)	0.799(0.036)	0.890(0.639)	0.925(0.017)
PIMA	0.500(0.056)	0.539(0.033)	0.479(0.044)	0.515(0.037)	0.499(0.670)	0.560(0.024)
WINE	0.881(0.072)	0.852(0.057)	0.881(0.072)	0.876(0.050)	0.950(0.036)	0.856(0.056)
GLASS	0.727(0.049)	0.733(0.001)	0.736(0.052)	0.717(0.055)	0.725(0.048)	0.746(0.040)
GERMAN	0.330(0.030)	0.449(0.037)	0.326(0.030)	0.344(0.029)	0.323(0.054)	0.464(0.029)
VEHICLE	$0.891_{(0.044)}$	0.867(0.027)	0.891(0.944)	0.881(0.021)	0.958(0.020)	0.880(0.049)
HAYES	0.036(0.081)	$0.183_{(0.130)}$	0.050(0.112)	0.221(0.133)	0.036(0.081)	0.593(0.072)
SEGMENTATION	0.859(0.028)	0.862(0.018)	0.877(0.028)	0.851(0.022)	0.885(0.034)	0.848(0.025)
ABALONE8	0.243(0.037)	0.318(0.013)	0.241(0.034)	0.330(0.015)	0.246(0.065)	0.349(0.018)
YEAST3	0.634(0.665)	0.670(0.034)	0.634(0.966)	0.699(0.015)	0.667(0.055)	0.687(0.033)
PAGEBLOCKS	0.842 (0.020)	0.850(0.024)	0.849(0.019)	0.847(0.029)	0.856(0.032)	0.844(0.023)
SATIMAGE	$0.454_{(0.039)}$	$0.457_{(0.027)}$	0.454(0.039)	0.457(0.023)	0.487(0.026)	0.430(0.008)
LIBRAS	0.806(0.076)	0.788(0.187)	0.806(0.076)	0.789(0.057)	0.770(0.027)	0.768(0.106)
WINEA	0.031(0.069)	0.090(0.086)	0.031(0.069)	0.019(0.042)	0.000(0.000)	0.090(0.036)
YEAST6	0.503(0.302)	0.449(0.112)	0.502(0.297)	0.338(0.071)	0.505(0.231)	0.553(0.215)
ABALONE17	$0.057_{(0.078)}$	0.172(0.086)	0.057(0.078)	0.096(0.059)	0.000(0.000)	0.100(0.038)
ABALONE20	0.000(0.000)	0.000(0.000)	0.000(0.000)	0.067(0.038)	0.057(0.128)	$0.052 \scriptscriptstyle (0.047)$
MEAN	0.543 (1 1 1 2 2	0.5750000	0.544	0.559.000	0.560	0 607 (0 040)

γ -NN: a way to reweight distributions

- < In uncertain regions (1-NN is already ok)
- ✓ At the **boundaries** (10 and 100 +)

Results on DGFiP datasets (F-measure)						
DATASETS	3–NN	$\gamma k - \mathrm{NN}$	SMOTE	$SMOTE + \gamma k - NN$		
DGFIP $19\ 2$	$0,\!454 \scriptscriptstyle (0,007)$	$0,\!528 \scriptscriptstyle (0,005)$	$0,505\scriptscriptstyle (0,010)$	0,529(0,003)		
Dgfip9 2	$0,\!173 \scriptscriptstyle (0,074)$	$\overline{0,\!396}_{(0,018)}$	$0,\!340 \scriptscriptstyle (0,033)$	$0,419_{(0,029)}$		
DGFIP $4\ 2$	$0,\!164\scriptscriptstyle (0,155)$	$\overline{0,\!373}_{(0,018)}$	$0,368 \scriptscriptstyle (0,057)$	$0,377_{(0,018)}$		
Dgfip8 1	$0,100 \scriptscriptstyle (0,045)$	$\overline{0,299}_{(0,010)}$	$0,\!278 \scriptscriptstyle (0,043)$	$0,299_{(0,011)}$		
Dgfip8 2	$0,140 \scriptscriptstyle (0,078)$	$0,\!292_{(0,028)}$	0,313 (0,048)	$0,312_{(0,021)}$		
Dgfip9 1	$0,\!088 \scriptscriptstyle (0,090)$	$0,\!258_{(0,036)}$	$0,270_{(0,079)}$	$\overline{0,288}_{(0,026)}$		
Dgfip4 1	$0,073 \scriptscriptstyle (0,101)$	$0,\!231_{(0,139)}$	$\overline{0,199}_{\scriptscriptstyle (0,129)}$	$0,278_{(0,067)}$		
Dgfip $16\ 1$	$0,049 \scriptscriptstyle (0,074)$	$\overline{0,166}_{(0,065)}$	$0,\!180 \scriptscriptstyle (0,061)$	$0,191_{(0,081)}$		
DGFIP $16\ 2$	$0,210\scriptscriptstyle (0,102)$	$0,\!202_{(0,056)}$	$\overline{0,220}{\scriptstyle (0,043)}$	$0,229_{(0,026)}$		
Dgfip 20 3	$0,\!142 \scriptscriptstyle (0,015)$	$0,\!210_{(0,019)}$	$\overline{0,199}_{\scriptscriptstyle (0,015)}$	$0,212_{(0,019)}$		
Dgfip5 3	$0,\!030 \scriptscriptstyle (0,012)$	$\overline{0,\!105}_{(0,008)}$	$0,110_{(0,109)}$	$\underline{0,107}_{(0,010)}$		
MEAN	$0,148_{(0,068)}$	$\underline{0,\!278}_{\scriptscriptstyle (0,037)}$	$0,\!271 \scriptscriptstyle (0,057)$	$0,295_{(0,028)}$		

Extension With Metric Learning

- Note:
 - $\circ \gamma$ -NN learns a metric for comparing a query to a +
 - $\circ \, \gamma$ -NN kind of learn the size of a sphere around +
 - $\circ~$ this is a very simple "Metric Learning"
- Extension
 - learn a full metric (a matrix *M* and not only a scalar γ)
 derive a learning algorithm (not just using a validation set)

Learning from Few Positives: a Provably Accurate Metric Learning Algorithm to deal with Imbalanced Data

- <u>Rémi Viola</u>, Rémi Emonet, Amaury Habrard, <u>Guillaume Metzler</u>, Marc Sebban
- IJCAI 2020 (International Joint Conference on Artificial Intelligence) \circ learn a full metric (a matrix *M* and not only a scalar γ)
 - derive a learning algorithm (not just using a validation set)
 - derive a theoretical guarantees

SLEIGHT Science Event#6 | Rémi Emonet | 2021-07-06 | 35 / 92 (2/2)

SLEIGHT Science Event#6 | Rémi Emonet | 2021-07-06 | 36 / 92

Simple (but realistic) unsupervised	Process behind the 3σ rule
anomaly detection	
 Setup and approach: the three-sigma rule we have a set of (unlabeled) points we consider one feature of interest we look at the standard deviation σ and mean of this feature anything beyond 3σ is an outlier/anomaly Possible improvements use robust statistics (percentiles, robust estimation) use several features 	 Overall process we suppose a parametric model that explains the data i.e., we suppose the data is generated by this model here, the data comes from the a normal distribution (with two unknown parameters: a mean μ and a standard deviation σ) we estimate the parameters from the data here, using the empirical mean and stdev if the likelihood of a (new) point is low, it is an outlier here, the normal density is very low after 3σ
SLEIGHT Science Event#6 Rémi Emonet 2021-07-06 67 / 92 (272)	SLEIGHT Science Event#6 Rémi Emonet 2021-07-06 68 / 92 (2/2)
Overview	A few methods (ex. from scikit-learn)
 Introduction Anomaly and (rare) event detection Problem, notations and performance measures Imbalanced classification problems General approaches Correcting k-NN: γ-NN and MLFP Learning Maximum Excluding Ellipsoids Focusing on the F-Measure optimization Unsupervised anomaly detection Simple motivating approach A variety of ML methods Probabilistic models 101 Case study: temporal motif mining More models (VAE, GAN, tensor networks,) Closing remarks 	
SLEIGHT Science Event#6 Rémi Emonet 2021-07-06 69 / 92	SLEIGHT Science Event#6 Rémi Emonet 2021-07-06 70 / 92
Overview	Probabilistic Generative Models
 Introduction Anomaly and (rare) event detection Problem, notations and performance measures Imbalanced classification problems General approaches Correcting k-NN: γ-NN and MLFP Learning Maximum Excluding Ellipsoids Focusing on the F-Measure optimization Unsupervised anomaly detection Simple motivating approach A variety of ML methods <u>Probabilistic models 101</u> Case study: temporal motif mining More models (VAE, GAN, tensor networks,) Closing remarks 	 A generalized "three sigma" rule more complex models more application than just anomaly detection Modeling step we define a (stochastic) generative story we define how we suppose data are generated we encode our knowledge/assumptions/constraints we define what is random and what is a parameter Learning/fitting step given the data, what do we know about parameters given the data, we find <i>the best</i> parameters Some possible usage given the learned parameters, what is an outlier? what do the parameters look like? what data could I generate from these parameters?
SLEIGHT Science Event#6 Rémi Emonet 2021-07-06 71 / 92	SLEIGHT Science Event#6 Rémi Emonet 2021-07-06 72 / 92 (4/4)

