Behavior of Distance-Based Methods in a Context of Class-Imbalance or High-Dimensionality

Rémi Emonet

```
Université Jean-Monnet,
Laboratoire Hubert Curien,
Saint-Étienne
Talk at Tahiti (Bréhat), 2019-06-27
```


Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathbf{N N}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathrm{NN}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

The Curse of Dimensionality

High-dimensionality is ${ }^{\text {can be }}$ a mess.

What is this Curse Anyway?

- Some definition:

Various phenomena that arise
when analyzing and organizing data
in high-dimensional spaces.

- Term coined by Richard E. Bellman
- 1920-1984
- dynamic programming
- differential equations
- shortest path
- What is (not) the cause?
- not an intrinsic property of the data
- depends on the representation
- depends on how data is analyzed

Combinatorial Explosion

- Suppose
- you have d entities
- each can be in 2 states
- Then
- there are 2^{d} combinations to consider/test/evaluate
- Happens when considering
- all possible subsets of a set $\left(2^{d}\right)$
- all permutations of a list ($d!$)
- all affectations of entities to labels (k^{d}, with k labels)

Regular Space Coverage

- Analogous to combinatorial explosion, in continuous spaces
- Happens when considering
- histograms
- density estimation
- anomaly detection
- ...

In Modeling and Learning

- The world is complicated
- state with a huge number of variables (dimensions)
- possibly noisy observations
- e.g. a 1M-pixel image has 3 million dimensions
- Learning would need observations for each state

- it would require too many
examples
- need for an "interpolation" procedure, to avoid overfitting
- Hughes phenomenon, 1968 paper (which is wrong, it seems)
given a (small) number of training samples,
additional feature measurements
may reduce the performance of a statistical classifier

A Focus on Distances/Volumes

- Considering a dimensional space
- About volumes
- volume of the cube: $C_{d}(r)=(2 r)^{d}$
- volume of a sphere with radius $r: S_{d}(r)=\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} r^{d}$
(Γ is the continuous generalization of the factorial)
- ratio: $\frac{S_{d}(r)}{C_{d}(r)} \rightarrow 0$ (linked to space coverage)

A Focus on Distances/Volumes (cont'd)

- About distances
- average (euclidean) distance between two random points?
- everything becomes almost as "far"
- Happens when considering

- radial distributions (multivariate normal, etc)
- k-nearest neighbors (hubness problem)
- other distance-based algorithms

The Curse of Dimensionality

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathrm{NN}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

Ockham's Razor

Shave unnecessary assumptions.

Ockham's Razor

- Term from 1852, in reference to Ockham (XIV ${ }^{\text {th }}$)
- lex parsimoniae, law of parsimony
- Prefer the simplest hypothesis that fits the data.
- Formulations by Ockham, but also earlier and later
- More a concept than a rule
- simplicity
- parsimony
- elegance
- shortness of explanation
- shortness of program (Kolmogorov complexity)
- falsifiability (sciencific method)
- According to Jürgen Schmidhuber, the appropriate mathematical theory of Occam's razor already exists, namely, Solomonoff's theory of optimal inductive inference.

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathrm{NN}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

Simplicity of Data: subspaces

- Data might be high-dimensional, but we have hope
- that there is a organization or regularity in the highdimensionality
- that we can guess it
- or, that we can learn/find it
- Approaches: dimensionality reduction, manifold learning
- PCA, kPCA, *PCA, SOM, Isomap, GPLVM, LLE, NMF, ...

Simplicity of Data: compressibility

- Idea
- data can be high dimensional but compressible
- i.e., there exist a compact representation
- Program that generates the data (Kolmogorov complexity)
- Sparse representations
- wavelets (jpeg), fourier transform
- sparse coding, representation learning

- Minimum description length
- size of the "code" + size of the encoded data

Simplicity of Models: information criteria

- Used to select a model
- Penalizes by the number k of free parameters
- AIC (Aikake Information Criterion)
- penalizes the Negative-Log-Likelihood by k
- BIC (Bayesian IC)
- penalizes the NLL by $k \log (n)$ (for n observations)
- BPIC (Bayesian Predictive IC)
- DIC (Deviance IC)
- FIC (Focused IC)
- Hannan-Quinn IC
- TIC (Takeuchi IC)
- Sparsity of the parameter vector ($l 0$ norm)
- penalizes the number of non-zero parameters

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathrm{NN}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

A Focus on Distances/Volumes (cont'd)

- About distances
- average (euclidean) distance between two random points?
- everything becomes almost as "far"
- Happens when considering

- radial distributions (multivariate normal, etc)
- k-nearest neighbors (hubness problem)
- other distance-based algorithms

Distance Contraction

- Experiment
- sampling uniformly random points in the unit cube
- looking at the distribution of inter-point distances
- variance decreases with dimensionality

- Question: is it a problem? maybe not if the ranking is right

Hubness Problem

- Experiment
- sampling uniformly random points in the unit cube
- computing how often each point is in the nearest neighbor of another point
- Hubness as skewness: hubness $=\frac{\mathbb{E}\left[\left(N-\mu_{N}\right)^{3}\right]}{\sigma_{N}^{3}}$

- Where are these points?
- The border theory...
- ... so it is distribution-dependant

Hubness: testing the border theory

- Wrapping the points (hyper-torus)

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 25 / 56

Hubness: what is a border?

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 26 / 56

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures).
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathrm{NN}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

Imbalanced Problems: Examples

- Anomaly detection
- unsafe situations in videos
- defect detection in images
- abnormal heart beat detection in ECG
- Fraud detection
- fraudulent checks
- credit card fraud (physical, online)
- financial fraud (French DGFIP)

Imbalanced Classification Problems

- Binary classification
+ positive class: minority class, anomaly, rare event, ...
- negative class: majority class, normality, typical event, ...
- Confusion matrix (of a model vs a ground truth)
- TP: true positive
- FP: false positive
- TN: true negative
- FN: false negative
- Some measures
- Precision: $p r e c=\frac{T P}{T P+F P}$
- Recall: $r e c=\frac{T P}{P}=\frac{T P}{T P+F N}$
- F_{β}-measure: $F_{\beta}=\left(1+\beta^{2}\right) \frac{\text { prec } \cdot \text { rec }}{\beta^{2} \cdot \text { prec }+ \text { rec }}$
*(higher is better)

F-measure vs Accuracy?

$$
\begin{aligned}
& F_{\beta}=\left(1+\beta^{2}\right) \frac{\text { prec } \cdot \text { rec }}{\beta^{2} \cdot \text { prec }+ \text { rec }}=\frac{\left(1+\beta^{2}\right) \cdot(P-F N)}{1+\beta^{2} P-F N+F P} \\
& \text { accuracy }=\frac{T P+T N}{P+N}=1-\frac{F N+F P}{P+N}
\end{aligned}
$$

- Accuracy inadequacy (e.g. $N=10000, P=100$)
- Lazy "all-" classifier ($T P=0, T N=N, F P=0, F N=P$)
- accuracy $=\frac{0+N}{P+N}=\frac{10000}{10100}=99 \%$
- $F_{\beta}=\frac{\left(1+\beta^{2}\right)(P-P)}{1+\beta^{2} P-P+0}=0$
- F_{β}-measure challenges
- discrete (like the accuracy)
- non-convex (even with continuous surrogates)
- non-separable, i.e. $F_{\beta} \neq \sum_{\left(x_{i}, y_{i}\right) \in S} \ldots$

Ok, but I'm doing gradient descent, so ...

- Gradient: $0.2 \Rightarrow-7.21, \quad 0.5 \Rightarrow-2.89, \quad 0.8 \Rightarrow-1.80, \quad 1 \Rightarrow-1.44$
- Example, gradient intensity is the same for:
- $10+$ wrongly classified with an output proba. of 0.2
- 40 - correctly classified with an output proba 0.8
- i.e., lazily predicting systematically 0.2 (for +)
yields a "stable" solution with $10+$ vs 40 -

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathbf{N N}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

Counteracting Imbalance

- Undersampling the majority class -
- Oversampling class +
- Generating fake +
- Using a weighted-classifiers learner

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathbf{N N}$).
- Focusing on the F-Measure optimization (Élisa)
- Discussion

A Corrected Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data

- Rémi Viola, Rémi Emonet , Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban
- ???

k-NN: k Nearest Neighbor Classification

- k-NN
- to classify a new point
- find the closest k points (in the training section)
- use a voting scheme to affect a class
- efficient algorithms

(K-D Tree, Ball Tree)
- Does k-NN still matter?
- non-linear by design (with similarity to RBF-kernel SVM)
- no learning, easy to patch a model (add/remove points)
- Limits of k-NN for imbalanced data?

Limits of k-NN for imbalanced data?

1. k-NN behavior in uncertain areas

- i.e., for some feature vector, the class can be + or -
- i.e., the Bayes Risk is non zero
- \checkmark not so bad (respects imbalance)

2. k-NN behavior around boundaries

- i.e., what happens if classes are separate but imbalanced
- * sampling effects cause problems

k-NN at a boundary (1000 +)

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 38 / 56

k-NN at a boundary (100 +)

k-NN at a boundary (10 +)

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 40 / 56

k-NN: increasing k?

A Corrected Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data

- Rémi Viola, Rémi Emonet , Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban
- ???

γ-NN Idea: push the decision boundary

- Goal: correct for problems due to sampling with imbalance
- Genesis: GAN to generate "+" around existing ones
\Rightarrow unstable, failing, complex
- Approach
- artificially make + closer to new points
- how? by using a different distance for + and -
- the base distance to + gets multiplied by a parameter γ (intuitively $\gamma \leq 1$ if + is rare)

$$
d_{\gamma}\left(x, x_{i}\right)= \begin{cases}d\left(x, x_{i}\right) & \text { if } x_{i} \in S_{-} \\ \gamma \cdot d\left(x, x_{i}\right) & \text { if } x_{i} \in S_{+}\end{cases}
$$

γ-NN: varying γ with two points

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 44 / 56 (5/6)

γ-NN: varying γ with a few +

- γ-NN can control how close to the minuses it pushes the boundary

γ-NN: Algorithm

Algorithm 1: Classification of a new example with $\gamma k-$ NN

Input : a query \mathbf{x} to be classified, a set of labeled samples $S=S_{+} \cup S_{-}$, a number of neighbors k, a positive real value γ, a distance function d
Output: the predicted label of \mathbf{x}
$\mathcal{N} \mathcal{N}^{-}, \mathcal{D}^{-} \leftarrow n n\left(k, \mathbf{x}, S_{-}\right) \quad / /$ nearest negative neighbors with their distances $\mathcal{N} \mathcal{N}^{+}, \mathcal{D}^{+} \leftarrow n n\left(k, \mathbf{x}, S_{+}\right) \quad / /$ nearest positive neighbors with their distances $\mathcal{D}^{+} \leftarrow \gamma \cdot \mathcal{D}^{+}$
$\mathcal{N} \mathcal{N}_{\gamma} \leftarrow \operatorname{firstK}\left(k, \operatorname{sortedMerge}\left(\left(\mathcal{N} \mathcal{N}^{-}, \mathcal{D}^{-}\right),\left(\mathcal{N} \mathcal{N}^{+}, \mathcal{D}^{+}\right)\right)\right)$ $y \leftarrow+$ if $\left|\mathcal{N} \mathcal{N}_{\gamma} \cap \mathcal{N} \mathcal{N}^{+}\right| \geq \frac{k}{2}$ else $-\quad / /$ majority vote based on $\mathcal{N} \mathcal{N}_{\gamma}$ return y

- Trivial to implement
- Same complexity as k-NN (at most twice)
- Training
- none, as k-NN
- γ is selected by cross-validation
(on the measure of interest)

γ-NN: a way to reweight distributions

- In uncertain regions
- At the boundaries

Results on public datasets (F-measure)

DATASETS	3-NN	DUP k-NN	w k - NN	CW $k-\mathrm{NN}$	LMNN	$\gamma k-\mathrm{NN}$
BALANCE	$0.954_{(0.017)}$	$0.954_{(0.017)}$	$0.957_{(0.017)}$	$0.961_{(0.010)}$	0.963 (0.012)	$0.954_{(0.029)}$
AUTOMPG	0.808(0.077)	$0.826_{(0.033)}$	$0.810_{(0.076)}$	$0.815{ }_{(0.053)}$	$0.827_{(0.054)}$	$0.831_{(0.025)}$
IONO	$0.752_{(0.053)}$	$0.859_{(0.021)}$	$0.756_{(0.060)}$	$0.799_{(0.036)}$	$0.890_{(0.039)}$	0.9
PIMA	$0.500_{(0.056)}$	$0.539_{(0.033)}$	$0.479_{(0.044)}$	$0.515{ }_{(0.037)}$	$0.499_{(0.070)}$	0.560(0.024)
WINE	$0.881_{(0.072)}$	$0.852_{(0.057)}$	$0.881_{(0.072)}$	$0.876_{(0.080)}$	$0.950_{(0.036)}$	$0.856_{(0.086)}$
GLASS	$0.727_{(0.049)}$	$0.733_{(0.061)}$	$0.736_{(0.052)}$	$0.717_{(0.055)}$	$0.725_{(0.048)}$	0.746
GERMAN	$0.330_{(0.030)}$	$0.449_{(0.037)}$	$0.326_{(0.030)}$	$0.344_{(0.029)}$	$0.323_{(0.054)}$	0.464(0.029)
VEHICLE	$0.891_{(0.044)}$	$0.867_{(0.027)}$	$0.891_{(0.044)}$	$0.881_{(0.021)}$	$0.958(0.020)$	0.880
HAYES	$0^{0.036}{ }_{(0.081)}$	$0.183_{(0.130)}$	$0.050_{(0.112)}$	$0.221_{(0.133)}$	$0.036_{(0.081)}$	$0.593_{(0.072)}$
SEGMENTAT	$0.859_{(0.028)}$	$0.862_{(0.018)}$	$0.877_{(0.028)}$	$0.851_{(0.022)}$	$0.885_{(0.034)}$	$0.848_{(0.025)}$
ABALONE8	$0.243_{(0.037)}$	$0.318_{(0.013)}$	$0.241_{(0.034)}$	$0.330_{(0.015)}$	$0.246_{(0.065)}$	$0.349_{(0.018)}$
YEAST3	$0.634_{(0.066)}$	$0.670_{(0.034)}$	$0.634_{(0.066)}$	$0.699_{(0.015)}$	$0.667_{(0.055)}$	$0.687_{(0.033)}$
PAGEBLOCKS	$0.842_{(0.020)}$	$0.850_{(0.024)}$	$0.849_{(0.019)}$	$0.847_{(0.029)}$	$0.856(0.032)$	$0.844_{(0.023)}$
SATIMAGE	$0.454_{(0.039)}$	$0.457_{(0.027)}$	$0.454_{(0.039)}$	$0.457_{(0.023)}$	$0.487_{(0.026)}$	$0.430_{(0.008)}$
LIBRAS	$0.806_{(0.076)}$	$0.788_{(0.187)}$	0.806(0.076)	$0.789_{(0.097)}$	$0.770_{(0.027)}$	$0.768_{(0.106)}$
WINE4	$0.031_{(0.069)}$	$0.090_{(0.086)}$	$0.031_{(0.069)}$	$0.019_{(0.042)}$	$0.000_{(0.000)}$	$0.090_{(0.036)}$
YEAST6	$0.503_{(0.302)}$	$0.449_{(0.112)}$	$0.502_{(0.297)}$	$0.338_{(0.071)}$	$0.505_{(0.231)}$	0.553(0.215)
ABALONE17	$0.057{ }_{\text {(0.078) }}$	$0.172{ }_{(0.086)}$	$0.057_{(0.078)}$	$0.096{ }_{(0.059)}$	$0.000_{(0.000)}$	$0.100_{(0.038)}$
ABALONE20	$0.000_{(0.000)}$	$0.000_{(0.000)}$	$0.000_{(0.000)}$	$0.067_{(0.038)}$	$0.057_{(0.128)}$	$0.052_{(0.047)}$
MEAN	$0.543_{(0.063)}$	$0.575_{(0.053)}$	$0.544_{(0.064)}$	$0.559_{(0.046)}$	$0.560_{(0.053)}$	$0.607_{(0.0}$

Results on DGFiP datasets (F-measure)

DATASETS	$3-$ NN	$\gamma k-$ NN	SMOTE	SMOTE $+\gamma k-$ NN
DIS				

DGFIP19 $20,454_{(0,007)}$
Dgfip9 2
DGFIP4 $20,164_{(0,155)}$
DGFIP8 $1 \quad 0,100_{(0,045)}$
DGFIP8 $20,140_{(0,078)}$
Dgfip9 1
Dgfip4 1
Dgfip16 1
Dgfip16 2
Dgfip20 3
DGFiP5 3 0,030(0,012)

0,	0,505(0,010)
$0,396{ }_{(0,018)}$	$0,340_{(0,033)}$
$\underline{0,373}_{(0,018)}$	0,368(0,057)
$\overline{\mathbf{0 , 2 9 9}}_{(0,010)}$	0,278(0,043)
0,292(0,028)	$\mathbf{0 , 3 1 3}{ }_{(0,048)}$
0,258(0,036)	0,270 ${ }_{(0,079)}$
$\underline{0,231}{ }_{(0,139)}$	$\overline{0,199}_{(0,129)}$
$0,166_{(0,065)}$	$0^{0,180_{(0,061)}}$
0,202 $(0,056)$	$\overline{0,220}_{(0,043)}$
0,210(0,019)	$\overline{0,199}^{(0,015)}$
0,105 ${ }_{(0,00}$	$\mathbf{0 , 1 1 0}$

$\mathbf{0 , 5 2 9}{ }_{(0,003)}$
$\mathbf{0 , 4 1 9} \mathbf{(0 , 0 2 9)}$
$\mathbf{0 , 3 7 7}{ }_{(0,018)}$
$\mathbf{0 , 2 9 9}{ }_{(0,011)}$
$0,312_{(0,021)}$
$\mathbf{0 , 2 8 8}{ }_{(0,026)}$
$\mathbf{0 , 2 7 8}{ }_{(0,067)}$
$\mathbf{0 , 1 9 1}{ }_{(0,081)}$
$\mathbf{0 , 2 2 9}{ }_{(0,026)}$
$\mathbf{0 , 2 1 2}{ }_{(0,019)}$
$0,107_{(0,010)}$

MEAN	$0,148_{(0,068)}$	$\underline{0,278_{(0,037)}}$	$0,271_{(0,057)}$	$\mathbf{0 , 2 9 5}(0,028)$

γ-NN at a boundary (10 and $100+$)

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathrm{NN}$)
- Focusing on the F-Measure optimization (Élisa).
- Discussion

From Cost-Sensitive Classification to Tight

 F-measure Bounds- Kevin Bascol, Rémi Emonet, Elisa Fromont, Amaury Habrard, Guillaume Metzler, Marc Sebban
- AISTATS2019

Optimizing the F_{β}-measure?

- Reminder
- Precision: prec $=\frac{T P}{T P+F P}$
- Recall: $r e c=\frac{T P}{P}=\frac{T P}{T P+F N}$
- F_{β}-measure: $F_{\beta}=\left(1+\beta^{2}\right) \frac{\text { prec } \cdot \text { rec }}{\beta^{2} \cdot \text { prec }+ \text { rec }}$
- Non-separability, i.e. $F_{\beta} \neq$

$$
\left(x_{i}, y_{i}\right) \in S
$$

NB: accuracy is separable, acc $=\sum_{\left(x_{i}, y_{i}\right) \in S} \frac{1}{m} \delta\left(y_{i}-\hat{y}_{i}\right)$
\Rightarrow The loss for one point depends on the others
\Rightarrow Impossible to optimize directly
\Rightarrow Impossible to optimize on a subset (minibatch)

Weighted classification for F_{β}

$F_{\beta}=\frac{\left(1+\beta^{2}\right) \cdot(P-F N)}{1+\beta^{2} P-F N+F P}=\frac{\left(1+\beta^{2}\right) \cdot\left(P-e_{1}\right)}{1+\beta^{2} P-e_{1}+e_{2}}$

- The F_{β}-measure is linear fractional (in $e=\left(e_{1}, e_{2}\right)=(F N, F P)$) i.e. $F_{\beta}=\frac{\left\langle a^{\prime}, e\right\rangle+b}{\langle c, e\rangle+d}=\frac{A}{B}$
- Relation to weighted classification
$F_{\beta} \geq t \quad$ (we achieve a good, above t, F_{β} value)
$\Leftrightarrow A \geq t \cdot B$
$\Leftrightarrow A-t \cdot B \geq 0$
$\Leftrightarrow\left(1+\beta^{2}\right) \cdot\left(P-e_{1}\right)-t\left(1+\beta^{2} P-e_{1}+e_{2}\right) \geq 0$
$\Leftrightarrow\left(-1-\beta^{2}+t\right) e_{1}-t e_{2} \geq-P\left(1+\beta^{2}\right)+t\left(1+\beta^{2} P\right)$
$\Leftrightarrow\left(1+\beta^{2}-t\right) e_{1}+t e_{2} \leq-P\left(1+\beta^{2}\right)+t\left(1+\beta^{2} P\right)$
\Rightarrow so, we can minimize the weighted problem with class weights $a(t)=\left(1+\beta^{2}-t, t\right)$

Overview

- Introduction
- High-dimensional problems
- The curse of dimensionality
- Ockham's Razor
- Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
- The Problem (and performance measures)
- Reweight, resampling, etc
- Correcting k-NN ($\gamma-\mathrm{NN}$)
- Focusing on the F-Measure optimization (Élisa)
- Discussion

Thank you! Questions?

and now for something completely different...

