#### Behavior of Distance-Based Methods in a Context of Class-Imbalance or High-Dimensionality

#### Rémi Emonet

Université Jean-Monnet, Laboratoire Hubert Curien, Saint-Étienne

Talk at Tahiti (Bréhat), 2019-06-27









# \$whoami

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### The Curse of Dimensionality

High-dimensionality is<sup>can be</sup> a mess.

#### What is this Curse Anyway?

• Some definition:

Various phenomena that arise when analyzing and organizing data in high-dimensional spaces.

- Term coined by Richard E. Bellman
  - 1920 1984
  - dynamic programming
  - differential equations
  - shortest path
- What is (not) the cause?
  - not an intrinsic property of the data
  - depends on the representation
  - depends on how data is analyzed

#### **Combinatorial Explosion**

- Suppose
  - $\circ$  you have d entities
  - each can be in 2 states
- Then
  - $\circ$  there are  $2^d$  combinations to consider/test/evaluate
- Happens when considering
  - $\circ$  all possible subsets of a set  $(2^d)$
  - $\circ$  all permutations of a list (d!)
  - $\circ$  all affectations of entities to labels ( $k^d$ , with k labels)

| { <b>a</b> }      | {a,b} | {a,b,c}                                                                                           | {a,b,c,d}    |
|-------------------|-------|---------------------------------------------------------------------------------------------------|--------------|
| {        }<br>{a} | {     | <pre>{      } {      c} {      b     } {      b,c} {a      } {a,      c} {a,b     } {a,b,c}</pre> | <pre>{</pre> |
|                   |       |                                                                                                   | ja, uj       |

## **Regular Space Coverage**

- Analogous to combinatorial explosion, in continuous spaces
- Happens when considering
  - histograms

Ο

- density estimation
- anomaly detection



Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 8 / 56 (11/12)

## **In Modeling and Learning**

- The world is complicated
  - state with a huge number of variables (dimensions)
  - possibly noisy observations
  - e.g. a 1M-pixel image has 3 million dimensions
- Learning would need observations for each state
  - it would require too many examples
  - need for an "interpolation" procedure, to avoid overfitting
- Hughes phenomenon, 1968 paper (which is wrong, it seems)

given a (small) number of training samples,

additional feature measurements

may reduce the performance of a statistical classifier



#### A Focus on Distances/Volumes

- Considering a *d* dimensional space
- About volumes
  - $\circ$  volume of the cube:  $C_d(r) = (2r)^d$
  - $\circ$  volume of a sphere with radius r:  $S_d(r) = rac{\pi^{d/2}}{\Gamma(rac{d}{r}+1)}r^d$

 $(\Gamma ext{ is the continuous generalization of the factorial}) \circ ext{ ratio: } rac{S_d(r)}{C_d(r)} o 0 ext{ (linked to space coverage)}$ 



#### A Focus on Distances/Volumes (cont'd)





- average (euclidean) distance between two random points?
- everything becomes almost **as** "far"
- Happens when considering
  - radial distributions (multivariate normal, etc)
  - k-nearest neighbors (hubness problem)
  - other distance-based algorithms



#### The Curse of Dimensionality

Many things get degenerated with high dimensions Problem of: approach + data representation We have to hope that there is no curse

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### Ockham's Razor

#### Shave unnecessary assumptions.

dech 1 se .

ANA DE MARRIED MARRIED MAR

#### **Ockham's Razor**

- Term from 1852, in reference to Ockham (XIV<sup>th</sup>)
- *lex parsimoniae*, law of parsimony
- Prefer the simplest hypothesis that fits the data.
- Formulations by Ockham, but also earlier and later
- More a concept than a rule
  - simplicity
  - parsimony
  - elegance
  - shortness of explanation
  - shortness of program (Kolmogorov complexity)
  - falsifiability (sciencific method)
- According to Jürgen Schmidhuber, the appropriate mathematical theory of Occam's razor already exists, namely, Solomonoff's theory of optimal inductive inference.

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### Simplicity of Data: subspaces

- Data might be high-dimensional, but we have hope
  - that there is a organization or regularity in the highdimensionality
  - $\circ~$  that we can guess it
  - $\circ~$  or, that we can learn/find it
- Approaches: dimensionality reduction, manifold learning
   PCA, kPCA, \*PCA, SOM, Isomap, GPLVM, LLE, NMF, ...

#### Simplicity of Data: compressibility



- Idea
  - data can be high dimensional but compressible
  - i.e., there exist a compact representation
- Program that generates the data (Kolmogorov complexity)
- Sparse representations
  - wavelets (jpeg), fourier transform
  - sparse coding, representation learning
- Minimum description length
  - size of the "code" + size of the encoded data



#### **Simplicity of Models: information criteria**

- Used to select a model
- Penalizes by the number *k* of *free parameters* 
  - AIC (Aikake Information Criterion)
    - penalizes the Negative-Log-Likelihood by k
  - BIC (Bayesian IC)
    - penalizes the NLL by  $k \log(n)$  (for *n* observations)
  - BPIC (Bayesian Predictive IC)
  - DIC (Deviance IC)
  - FIC (Focused IC)
  - Hannan-Quinn IC
  - TIC (Takeuchi IC)
- Sparsity of the parameter vector (*l*0 norm)
  - penalizes the number of non-zero parameters

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- <u>High-dimensionality and Neighborhood</u>
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### A Focus on Distances/Volumes (cont'd)





- average (euclidean) distance between two random points?
- everything becomes almost **as** "far"
- Happens when considering
  - radial distributions (multivariate normal, etc)
  - k-nearest neighbors (hubness problem)
  - other distance-based algorithms



#### **Distance Contraction**

- Experiment
  - $\circ~$  sampling uniformly random points in the unit cube
  - looking at the distribution of inter-point distances
  - variance decreases with dimensionality



• Question: is it a problem? maybe not if the ranking is right

#### **Hubness Problem**

- Experiment
  - sampling uniformly random points in the unit cube
  - computing how often each point is in the nearest neighbor of another point  $\mathbb{E}[(N-\mu_N)^3]$
  - Hubness as skewness: *hubness* =



Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 23 / 56

#### Hubness: why are some points so special?



hubness-uniform-sqeuclidean-False

- Where are these points?
- The border theory...
- ... so it is distribution-dependant

#### Hubness: testing the border theory

#### Wrapping the points (hyper-torus) lacksquare









200 400 600 800 1000

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 25 / 56

#### Hubness: what is a border?

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 26 / 56

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### **Imbalanced Problems: Examples**

- Anomaly detection
  - unsafe situations in videos
  - defect detection in images
  - abnormal heart beat detection in ECG
- Fraud detection
  - fraudulent checks
  - credit card fraud (physical, online)
  - financial fraud (French DGFIP)

#### **Imbalanced Classification Problems**

- Binary classification
  - + positive class: minority class, anomaly, rare event, ...
  - negative class: majority class, normality, typical event, ...
- Confusion matrix (of a model vs a ground truth)
  - TP: true positive
  - FP: false positive
  - TN: true negative
  - FN: false negative
- Some measures
  - Precision:  $prec = \frac{TP}{TP + FP}$
  - Recall:  $rec = \frac{TP}{P} = \frac{TP}{TP + FN}$
  - $\circ \ \ F_{eta}$ -measure:  $F_{eta} = (1+eta^2) rac{prec \cdot rec}{eta^2 \cdot prec + rec}$

\*(higher is better)

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 29 / 56 (2/3)



#### F-measure vs Accuracy?

$$F_eta = (1+eta^2)rac{prec \cdot rec}{eta^2 \cdot prec + rec} = rac{(1+eta^2) \cdot (P-FN)}{1+eta^2 P - FN + FP}$$

$$accuracy = \frac{TP + TN}{P + N} = 1 - \frac{FN + FP}{P + N}$$

- Accuracy inadequacy (e.g. N = 10000, P = 100)
  - $\circ$  lazy "all-" classifier (TP = 0, TN = N, FP = 0, FN = P)

- $F_{\beta}$ -measure challenges
  - discrete (like the accuracy)
  - non-convex (even with continuous surrogates)
  - **non-separable**, i.e.  $F_{\beta} \neq \sum_{(x_i,y_i)\in S} ...$

#### Ok, but I'm doing gradient descent, so ...



- Gradient:  $0.2 \Rightarrow -7.21$ ,  $0.5 \Rightarrow -2.89$ ,  $0.8 \Rightarrow -1.80$ ,  $1 \Rightarrow -1.44$
- Example, gradient intensity is the same for:
  - $\circ~10+$  wrongly classified with an output proba. of 0.2
  - $\circ$  40 correctly classified with an output proba 0.8
  - $\circ$  i.e., lazily predicting systematically 0.2 (for +) yields a "stable" solution with 10+ vs 40-

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - <u>Reweight, resampling, etc</u>
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### **Counteracting Imbalance**

- Undersampling the majority class –
- Oversampling class +
- Generating fake +
- Using a weighted-classifiers learner

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

A Corrected Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data

 <u>Rémi Viola</u>, Rémi Emonet , Amaury Habrard, <u>Guillaume Metzler</u>, Sébastien Riou, Marc Sebban
 ???

#### k-NN: k Nearest Neighbor Classification

- k-NN
  - to classify a new point
  - find the closest k points (in the training section)
  - $\circ~$  use a voting scheme to affect a class
  - efficient algorithms (K-D Tree, Ball Tree)
- Does k-NN still matter?
  - non-linear by design (with similarity to RBF-kernel SVM)
  - no learning, easy to patch a model (add/remove points)
  - Limits of k-NN for imbalanced data?



#### Limits of k-NN for imbalanced data?

- 1. k-NN behavior in uncertain areas
  - $\circ~$  i.e., for some feature vector, the class can be + or -
  - $\circ$  i.e., the Bayes Risk is non zero
  - ✓ not so bad (respects imbalance)
- 2. k-NN behavior around boundaries
  - i.e., what happens if classes are separate but imbalanced
  - **X** sampling effects cause problems

#### k-NN at a boundary (1000 +)



Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 38 / 56

## k-NN at a boundary (100 +)



Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 39 / 56

## k-NN at a boundary (10 +)



Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 40 / 56

#### k-NN: increasing k?



#### A Corrected Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data

 Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban
 ???

#### $\gamma$ -NN Idea: push the decision boundary



- Goal: correct for problems due to sampling with imbalance
- Genesis: GAN to generate "+" around existing ones
   ⇒ unstable, failing, complex
- Approach
  - artificially make + closer to new points
  - $\circ~$  how? by using a different distance for + and -
  - the base distance to + gets multiplied by a parameter  $\gamma$ (intuitively  $\gamma \leq 1$  if + is rare)

$$d_\gamma(x,x_i) = egin{cases} d(x,x_i) & ext{if } x_i \in S_-, \ \gamma \cdot d(x,x_i) & ext{if } x_i \in S_+. \end{cases}$$

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 43 / 56 (3/4)

#### $\gamma$ -NN: varying $\gamma$ with two points



Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 44 / 56 (5/6)

#### $\gamma$ -NN: varying $\gamma$ with a few +



•  $\gamma$ -NN can control

how close to the minuses it pushes the boundary

#### $\gamma$ -NN: Algorithm

**Algorithm 1:** Classification of a new example with  $\gamma k$ -NN

**Input** : a query **x** to be classified, a set of labeled samples  $S = S_+ \cup S_-$ , a number of neighbors k, a positive real value  $\gamma$ , a distance function d**Output:** the predicted label of **x** 

 $\begin{array}{l} \mathcal{NN}^{-}, \mathcal{D}^{-} \leftarrow nn(k, \mathbf{x}, S_{-}) & // \text{ nearest negative neighbors with their distances} \\ \mathcal{NN}^{+}, \mathcal{D}^{+} \leftarrow nn(k, \mathbf{x}, S_{+}) & // \text{ nearest positive neighbors with their distances} \\ \mathcal{D}^{+} \leftarrow \gamma \cdot \mathcal{D}^{+} \\ \mathcal{NN}_{\gamma} \leftarrow firstK \left( k, sortedMerge((\mathcal{NN}^{-}, \mathcal{D}^{-}), (\mathcal{NN}^{+}, \mathcal{D}^{+})) \right) \\ y \leftarrow + \text{ if } \left| \mathcal{NN}_{\gamma} \cap \mathcal{NN}^{+} \right| \geq \frac{k}{2} \text{ else } - // \text{ majority vote based on } \mathcal{NN}_{\gamma} \\ \textbf{return } y \end{array}$ 

- Trivial to implement
- Same complexity as k-NN (at most twice)
- Training
  - ∘ none, as k-NN
  - γ is selected by cross-validation (on the measure of interest)

#### $\gamma\text{-NN}:$ a way to reweight distributions

- In uncertain regions
- At the boundaries

## **Results on public datasets (F-measure)**

| DATASETS     | 3-NN                               | DUPk-NN                            | wk-NN                              | CWk-NN                             | LMNN                               | $\gamma k$ -NN                     |
|--------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| BALANCE      | 0.954(0.017)                       | 0.954(0.017)                       | $0.957 \scriptscriptstyle (0.017)$ | $0.961 \scriptscriptstyle (0.010)$ | $0.963_{(0.012)}$                  | $0.954 \scriptscriptstyle (0.029)$ |
| AUTOMPG      | $0.808_{(0.077)}$                  | $0.826 \scriptscriptstyle (0.033)$ | 0.810(0.076)                       | $0.815 \scriptscriptstyle (0.053)$ | $0.827 \scriptscriptstyle (0.054)$ | $0.831_{(0.025)}$                  |
| IONO         | $0.752 \scriptscriptstyle (0.053)$ | $0.859 \scriptscriptstyle (0.021)$ | $0.756 \scriptscriptstyle (0.060)$ | $0.799 \scriptscriptstyle (0.036)$ | $0.890 \scriptscriptstyle (0.039)$ | $0.925_{(0.017)}$                  |
| PIMA         | 0.500(0.056)                       | $0.539 \scriptscriptstyle (0.033)$ | $0.479 \scriptscriptstyle (0.044)$ | $0.515 \scriptscriptstyle (0.037)$ | $0.499 \scriptscriptstyle (0.070)$ | 0.560(0.024)                       |
| WINE         | $0.881_{(0.072)}$                  | 0.852(0.057)                       | 0.881(0.072)                       | $0.876 \scriptscriptstyle (0.080)$ | 0.950(0.036)                       | $0.856 \scriptscriptstyle (0.086)$ |
| GLASS        | $0.727 \scriptscriptstyle (0.049)$ | $0.733 \scriptscriptstyle (0.061)$ | $0.736 \scriptscriptstyle (0.052)$ | $0.717 \scriptscriptstyle (0.055)$ | $0.725 \scriptscriptstyle (0.048)$ | $0.746_{(0.046)}$                  |
| GERMAN       | $0.330 \scriptscriptstyle (0.030)$ | 0.449(0.037)                       | $0.326 \scriptscriptstyle (0.030)$ | $0.344 \scriptscriptstyle (0.029)$ | $0.323 \scriptscriptstyle (0.054)$ | 0.464 (0.029)                      |
| VEHICLE      | $0.891_{(0.044)}$                  | 0.867(0.027)                       | 0.891(0.044)                       | $0.881 \scriptscriptstyle (0.021)$ | $0.958_{(0.020)}$                  | 0.880(0.049)                       |
| HAYES        | $0.036 \scriptscriptstyle (0.081)$ | 0.183(0.130)                       | 0.050(0.112)                       | $0.221 \scriptscriptstyle (0.133)$ | $0.036 \scriptscriptstyle (0.081)$ | 0.593 (0.072)                      |
| SEGMENTATION | $0.859 \scriptscriptstyle (0.028)$ | 0.862(0.018)                       | 0.877 (0.028)                      | $0.851 \scriptscriptstyle (0.022)$ | $0.885_{(0.034)}$                  | $0.848 \scriptscriptstyle (0.025)$ |
| ABALONE8     | $0.243 \scriptscriptstyle (0.037)$ | $0.318 \scriptscriptstyle (0.013)$ | $0.241 \scriptscriptstyle (0.034)$ | $0.330 \scriptscriptstyle (0.015)$ | $0.246 \scriptscriptstyle (0.065)$ | $0.349_{(0.018)}$                  |
| yeast3       | $0.634 \scriptscriptstyle (0.066)$ | $0.670 \scriptscriptstyle (0.034)$ | $0.634 \scriptscriptstyle (0.066)$ | $0.699_{(0.015)}$                  | $0.667 \scriptscriptstyle (0.055)$ | 0.687 (0.033)                      |
| PAGEBLOCKS   | $0.842 \scriptscriptstyle (0.020)$ | $0.850 \scriptscriptstyle (0.024)$ | $0.849 \scriptscriptstyle (0.019)$ | $0.847 \scriptscriptstyle (0.029)$ | $0.856_{(0.032)}$                  | $0.844 \scriptscriptstyle (0.023)$ |
| SATIMAGE     | $0.454 \scriptscriptstyle (0.039)$ | 0.457(0.027)                       | 0.454(0.039)                       | $0.457 \scriptscriptstyle (0.023)$ | $0.487_{(0.026)}$                  | 0.430(0.008)                       |
| LIBRAS       | $0.806_{(0.076)}$                  | $0.788_{(0.187)}$                  | $0.806_{(0.076)}$                  | $0.789 \scriptscriptstyle (0.097)$ | 0.770(0.027)                       | $0.768 \scriptscriptstyle (0.106)$ |
| WINE4        | $0.031_{(0.069)}$                  | 0.090(0.086)                       | 0.031 (0.069)                      | $0.019 \scriptscriptstyle (0.042)$ | 0.000(0.000)                       | 0.090(0.036)                       |
| yeast6       | $0.503 \scriptscriptstyle (0.302)$ | $0.449_{(0.112)}$                  | $0.502 \scriptscriptstyle (0.297)$ | $0.338 \scriptscriptstyle (0.071)$ | $0.505 \scriptscriptstyle (0.231)$ | $0.553_{(0.215)}$                  |
| ABALONE17    | $0.057_{(0.078)}$                  | $0.172_{(0.086)}$                  | 0.057 (0.078)                      | $0.096 \scriptscriptstyle (0.059)$ | 0.000(0.000)                       | 0.100(0.038)                       |
| ABALONE20    | $0.000_{(0.000)}$                  | 0.000(0.000)                       | 0.000(0.000)                       | $0.067_{(0.038)}$                  | $0.057 \scriptscriptstyle (0.128)$ | $0.052 \scriptscriptstyle (0.047)$ |
| MEAN         | $0.543 \scriptscriptstyle (0.063)$ | $0.575 \scriptscriptstyle (0.053)$ | $0.544 \scriptscriptstyle (0.064)$ | $0.559 \scriptscriptstyle (0.046)$ | $0.560 \scriptscriptstyle (0.053)$ | 0.607(0.049)                       |

#### **Results on DGFiP datasets (F-measure)**

| DATASETS     | 3-NN                                 | $\gamma k - NN$                                | SMOTE                        | $ SMOTE + \gamma k - NN $          |
|--------------|--------------------------------------|------------------------------------------------|------------------------------|------------------------------------|
| Dgfip19 2    | $0,\!454 \scriptscriptstyle (0,007)$ | $0,528 \scriptscriptstyle (0,005)$             | $0,505_{(0,010)}$            | $0,529_{(0,003)}$                  |
| Dgfip9 2     | $0,\!173 \scriptscriptstyle (0,074)$ | $\overline{0,\!396}_{(0,018)}$                 | $0,340_{(0,033)}$            | $0,419_{(0,029)}$                  |
| DGFIP $4\ 2$ | $0,\!164 \scriptscriptstyle (0,155)$ | $\overline{0,\!373}_{(0,018)}$                 | $0,368_{(0,057)}$            | $0,377_{(0,018)}$                  |
| Dgfip8 1     | $0,100_{(0,045)}$                    | $\overline{0,299}_{(0,010)}$                   | $0,278_{(0,043)}$            | $0,299_{(0,011)}$                  |
| Dgfip8 2     | $0,140_{(0,078)}$                    | $0,\!292_{(0,028)}$                            | 0,313(0,048)                 | $0,312 \scriptscriptstyle (0,021)$ |
| Dgfip9 1     | $0,088 \scriptscriptstyle (0,090)$   | $0,\!258_{(0,036)}$                            | $0,270_{(0,079)}$            | $\overline{0,288}_{(0,026)}$       |
| Dgfip4 1     | $0,\!073_{(0,101)}$                  | $0,\!231_{(0,139)}$                            | $\overline{0,199}_{(0,129)}$ | $0,278_{(0,067)}$                  |
| Dgfip16 1    | $0,049_{(0,074)}$                    | $\overline{0,166}_{(0,065)}$                   | $0,180_{(0,061)}$            | $0,191_{(0,081)}$                  |
| Dgfip16 2    | $0,210_{(0,102)}$                    | $0,\!202_{(0,056)}$                            | $\overline{0,220}_{(0,043)}$ | $0,229_{(0,026)}$                  |
| Dgfip20 3    | $0,142 \scriptscriptstyle (0,015)$   | $0,210_{(0,019)}$                              | $\overline{0,199}_{(0,015)}$ | $0,212_{(0,019)}$                  |
| Dgfip5 3     | $0,\!030 \scriptscriptstyle (0,012)$ | $\overline{0,\!105}_{(0,008)}$                 | $0,110_{(0,109)}$            | $\underline{0,107}_{(0,010)}$      |
| MEAN         | $0,148 \scriptscriptstyle (0,068)$   | $\boxed{0,\!278}_{\scriptscriptstyle (0,037)}$ | $0,\!271_{(0,057)}$          | <b>0,295</b> (0,028)               |

# $\gamma$ -NN at a boundary (10 and 100 +)



#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- Discussion

#### From Cost-Sensitive Classification to Tight F-measure Bounds

- <u>Kevin Bascol</u>, Rémi Emonet, Elisa Fromont, Amaury Habrard, <u>Guillaume Metzler</u>, Marc Sebban
- AISTATS2019

#### **Optimizing the** $F_{\beta}$ **-measure?**

• Reminder

• Precision: 
$$prec = \frac{TP}{TP + FP}$$

• Recall: 
$$rec = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$\circ \ F_{eta}$$
-measure:  $F_{eta} = (1+eta^2) rac{prec \cdot rec}{eta^2 \cdot prec + rec}$ 

• Non-separability, i.e.  $F_{\beta} \neq \sum_{(x_i,y_i)\in S} ...$ 

NB: accuracy is separable,  $acc = \sum_{(x_i,y_i)\in S} rac{1}{m} \delta(y_i - \hat{y_i})$ 

⇒ The loss for one point depends on the others
 ⇒ Impossible to optimize directly
 ⇒ Impossible to optimize on a subset (minibatch)

#### Weighted classification for $F_{\beta}$

$$F_{\beta} = \frac{(1+\beta^2) \cdot (P-FN)}{1+\beta^2 P - FN + FP} = \frac{(1+\beta^2) \cdot (P-e_1)}{1+\beta^2 P - e_1 + e_2}$$

- The  $F_{\beta}$ -measure is linear fractional (in  $e = (e_1, e_2) = (FN, FP)$ ) i.e.  $F_{\beta} = \frac{\langle a', e \rangle + b}{\langle c, e \rangle + d} = \frac{A}{B}$
- Relation to weighted classification

 $F_{\beta} \geq t \quad (\text{we achieve a good, above } t, F_{\beta} \text{ value}) \\ \Leftrightarrow A \geq t \cdot B \\ \Leftrightarrow A - t \cdot B \geq 0 \\ \Leftrightarrow (1 + \beta^2) \cdot (P - e_1) - t(1 + \beta^2 P - e_1 + e_2) \geq 0 \\ \Leftrightarrow (-1 - \beta^2 + t)e_1 - te_2 \geq -P(1 + \beta^2) + t(1 + \beta^2 P) \\ \Leftrightarrow (1 + \beta^2 - t)e_1 + te_2 \leq -P(1 + \beta^2) + t(1 + \beta^2 P) \\ \Rightarrow \text{ so, we can minimize the weighted problem} \\ \text{ with class weights } a(t) = (1 + \beta^2 - t, t) \end{cases}$ 

#### **Overview**

- Introduction
- High-dimensional problems
  - The curse of dimensionality
  - Ockham's Razor
  - Notions of Simplicity
- High-dimensionality and Neighborhood
- Imbalanced classification problems
  - The Problem (and performance measures)
  - Reweight, resampling, etc
  - Correcting k-NN ( $\gamma$ -NN)
  - Focusing on the F-Measure optimization (Élisa)
- <u>Discussion</u>

#### Thank you! Questions?

and now for something completely different...

Tahiti (Bréhat) | Rémi Emonet | 2019-06-27 | 56 / 56