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Context: Optimal Transport

Fig. 1. Top-view of optimally reshaping a source triangle-shaped mass into a target 
“IUFrance”, with 5 interpolated/intermediate states. The red color is used to help following 
the trajectory of individual points.

The domain of Optimal Transport (OT) stems from the problem that considers some mass 
(goods, units of material, people, etc) and that need to be redistributed from their current 
locations towards new locations. Intuitively, OT supposes that the cost of moving some 
material is proportional the mass and to a cost function c (also called the ground metric) that 
depends on the source and target locations and which is often fixed for a problem, usually to 
the Euclidean distance.

Optimal Transport problem formulation
In its probabilistic form, the optimal transport problem is formulated as finding a transport 
plan minimizing the total cost, i.e. a solution to the following OT problem:

Where Π μ ,ν is the set of admissible transport plans, i.e., the set of joint distributions on X ,Y  
that have marginals μ and ν. A total cost is associated with each transport plan. Under 
conditions on the ground metric, the optimal total cost defines a distance between 
distributions (μ and ν here), namely the Wasserstein distance. Proving that a particular 
transport formulation yields a proper distance is one of the question around any new 
formulations in optimal transport, however, in the rest of this proposal, we will use the term 
“distance” loosely.

Formulated in terms of distributions, OT can be considered both between continuous 
distributions and between empirical ones (i.e., sums of Dirac-delta distribution, i.e, sets of 
points) but also between continuous and empirical ones. Most formulations can handle both 
continuous and empirical distributions, usually switching integrals for sums, but most 
algorithms are designed for empirical distributions (datasets).
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Fig. 2. Illustration of 1D continuous optimal transport between the source distribution μ (blue)
and the target distribution ν (red). The grey distribution shows an intermediate state during 
the transportation of mass and also corresponds to a Wasserstein barycenter of μ and ν. 
More steps are shown on the right.

Importance of Optimal Transport in Machine Learning
OT is widely used in statistical machine learning (ML) as it is a natural fit for many of the ML 
questions. Indeed, theoretical machine learning involves a lot reasoning about probability 
distributions, know (prior, dataset) or unknown (true distribution), continuous (prior, true 
distribution) or discrete (dataset, sampled distribution, stochastic approximations). In this 
context, the Wassertein distance is more and more used as a robust alternative to the KL 
divergence which might not be defined or might not provide good “differential/gradient” 
information. A lot remains to be done in this domain and we can expect a strong impact of 
OT formalism on ML.
In transfer learning, the formulation of the problems often involves a term of divergence 
between the source data distribution and the target one. As a mathematical tool to reason 
about such divergence, OT is pervasively now used in transfer learning: it has first been an 
alternate way to explain adversarial training approaches (e.g., for domain adaptation or 
generative adversarial networks) and has quickly hinted robust approaches to such 
problems.
OT is however mostly limited to traditional datasets where we need only to compare 
distributions on the same space. Some formulations have been introduced to go beyond this 
setting, making it possible to compare, e.g. distributions from different spaces, or graphs, but 
currently with major limitations on the scalability.

Extensions of Optimal Transport
In this section, we focus on aspects related to modeling and mathematical formulations of 
some extensions of optimal transport beyond the simple distribution-to-distribution mapping. 
These extensions show that the formalism is flexible and can be adapted further to cover an 
ever-growing range of settings and applications. Considerations about scalability are 
paramount but they are pushed back to the next section.

A constraint of OT is that the sets of points (or distributions) to be matched, μ and ν, should 
lie in the same space or, alternatively, that we provide a cost function that compares object 
from different spaces, which is usually not easy. This limits the applicability of OT and, thus, 
the Gromov Wasserstein (GW) problem has been proposed for distributions lying in different 
spaces. GW still aims at finding a transport between two sets of points but it aims at 
matching pairwise distances. The GW problem can be formulated as:
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or in its discrete form

As GW uses pairwise distances in each space, it can be applied on different spaces. It can 
also work with weighted graphs and defines a distance on them, which opens to a lot of 
applications that need a way to compare graphs.

Another OT extension to handle distributions in different spaces is Co-Optimal Transport 
(CO-OT) [1]. The principle is to find one transport between points, as in normal OT, but to 
also learn a second transport plan that aligns features between the two spaces.

Orthogonal to the previous extensions is the concept of multi-marginal optimal transport [2] in
which more than two (e.g., r=3) marginal distributions need to be aligned. The problem is 
specified by r marginals and a cost function with r parameters; and a transport plan is an 
order r tensor.

As OT defines a distance between distributions, it is also used to define a notion of 
barycenter (Fréchet mean) of distributions. This has been showcased for example for shape 
(seen as densities) interpolation [3] (and Fig. 1) or, with GW, for averaging contours [4] or 
graphs [5]. 

We proposed, in [6], the Optimal Tensor Transport (OTT) formulation which generalizes the 
problems of OT, GW, and CO-OT (see Fig. 3). OTT additionally allows to handle more 
complex structures such as datasets made of triplets (or any tuples), collections of weighted 
graphs, or points with several feature axes (generalization of CO-OT).

Fig. 3. Visualization of Optimal Tensor Transport (OTT) with existing approaches (top) and 
new ones made possible by OTT (bottom).

Complexity and Scalability of Optimal Transport
Considering two empirical distributions each with N  points, the OT problem has a complexity 
that depends on the dimensionality of the space (and the ground metric used). In 1d, the 
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optimal transport plan is the same for most relevant ground metrics and can be obtained by 
sorting each set of point and then matching them in order, yielding a N . log (N ) time 
complexity. The general problem is a linear programming problem but it involves many 
variables and its complexity is N ³ . log (N ) in the worst case and super-cubic in practice [7].

Entropic reguralization [7] has been proposed to make the OT problem strongly convex and 
suggests the use of the Sinkhorn algorithm. For P iterations of the algorithm, the time 
complexity is brought down to P .N ², the number P of iterations necessary to converge 
being mostly independent of N  [7].

Approaches like Sliced Wassertein [9] leverage random projections and the N . log (N ) 
complexity of the one-dimensional OT solver to produce extremely fast algorithms. One 
limitation of most sliced methods is that they don’t directly provide a transport plan, nor they 
estimate the Wassertein distance (they compute a different distance).

As for the GW problem, it is a generalization of the quadratic assignment problem (QAP) 
which is NP-hard, so all know algorithms are approximate ones. Entropic Gromov 
Wasserstein (EGW) is the most used algorithm for finding a solution to the GW problem. It 
runs S iterations of a projected mirror descent where each iteration is itself an OT problem, 
solved with P iterations of the Sinkhorn algorithm. Considering P≪N ², it yields a time 
complexity of S .N ³ for particular losses L and S .N ⁴ in the general case (see [10] for details 
and a summary).

Hierarchical approaches such as [11] use a closed-form expression for barycenters, only 
available with certain loss functions, to hierarchically divide the GW problem, with a resulting
N ² . log (N ) complexity.

In [10], we identified a matrix-expectation in the GW formulation and proposed to sample it 
instead of using the full computation used in EGW. With M  samples this yields a S .M . N ² 
time complexity, with any loss function. We also proposed a kind of sliced variation, by 
setting M=1 and leveraging the 1d OT solver. It brings down the time complexity to
S .N . log (N ), at the cost of accuracy in certain cases. Related to our sampling approach, a 
recent preprint [12] sparsifies the computations and brings down the complexity to S .N ² for 
the general case.

As for the general OTT formulation, with order D tensors (also an NP-hard problem), a 
typical non-stochastic algorithm would have a S .N 2D or S .N D+1 complexity with the square 
loss, which is prohibitive. Our sampling approach still displays a S .M . N ² complexity.

Project structure and planning

The project is articulated as 4 research directions (D1-D4). While D3 will be developed 
around a just-started Ph.D. Thesis, and D1 around a tentative funding for a Ph.D. Thesis 
(hopefully effective next year or the year after, or alternatively without Ph.D. student), I will 
develop D2 by working in collaboration with colleagues from the team but also internationally 
(starting right away in the context of the APRIORI ANR project). D4 will mainly be personal 
work at first (just started) but will most probably grow by creating a dedicated working group 
at the horizon of 1 or 2 years.
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D1) Direction 1: scalable extensions of optimal transport

This direction of work relies on 3 sub-axes that are well defined. These would ideally feed 
some collaboration around a thesis subject (or else internships), with applications on time 
series.

While OTT is a very generic formulation, it can be extended to include even more principles 
in a unified general framework. Among the orthogonal aspects that could benefit from being 
factored in the formulation are the multi-marginal setting , the marginal relaxation [13], the 
inclusion of class information, the inclusion of class shift [14] or the use of metric 
learning [15]. Another generalization, which is rather direct, is the inclusion of “fused” 
formulations where several OTT problems are optimized jointly, as done in Fused-GW which 
optimizes both (as a weighted sum) a OT loss and a GW loss. Proposing an integrated 
generalized framework, can transform optimal transport into a new way of modeling (like 
graphical models for probabilistic models), especially for transfer learning, and act as a pivot 
representation for novel orthogonal contributions like new types of transport plans (e.g., for 
times series), types of constraints (e.g., relaxed marginals with constraints), algorithms to 
solve the problem (see below).

One of the main challenges of OT, and especially of its generalization like GW and OTT is 
the scalability. It remains an open problem that prevents the use of these methods even on 
moderate-size datasets. Existing fast approaches can be classified in three categories: 
“sliced” approaches based on random projections [9][16][10], stochastic approaches [10][12] 
based on sampling, and hierarchical approaches [11][17]. Designing hierarchical 
stochastic approaches with uncertainty quantification, combined with the N . log (N ) time
complexity of slicing, can bring down the practical complexity of (approximate) generalized 
OT problems. Intuitively, a hierarchical approach allows to deal with huge datasets by 
simplifying them to an intermediate size. On this simplified form, the actual algorithms (like 
EGW) still have high complexity above N ³ for the simplest GW case and thus sampling is 
the way to reduce this complexity at the cost of higher uncertainty. By better modeling this 
uncertainty, for instance in a Bayesian formulation [18], we can expect to derive more robust 
fast algorithms. Slicing can play a role at different levels in a generalized setting, to bring 
down the complexity further: it can be used as an inner step as in PoGroW [10] but requires 
a selection (e.g., max-sliced) or voting scheme (to properly aggregate different slices), or it 
can be used as a randomized initialization method for an approach that would further refine it
(e.g. to locally explore the polytope of admissible transport plans). A very recent preprint [19] 
explores hierarchical sliced approaches for the standard OT problem.

Another promising direction to improve scalability for problems such as OTT is the one 
proposed in DifFused Gromov Wasserstein (DFGW) [20]. Introduced in a fused-GW setting 
(working with labeled weighted graphs), DFGW leverages the edge information (graphs 
induced by the GW costs) to diffuse the node features (OT information) and then solves a 
traditional OT problem, which has much lower complexity than GW. Generalizing DifFused-
GW to OTT opens many questions about how to generalize the graph diffusion to higher 
order tensors. Other interesting problems are suggested by DGFW and its potential 
application fields: how to use graphs with directional information, how to used it for sub-
graphs matching, how to use faster approximate graph diffusion algorithms, how is it linked 
to graph neural networks combined with OT, etc. A natural way of working on this subject 
would be in a direct collaboration with the authors of DFGW [20].
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D2) Direction 2: generalization guarantees and OT

This direction of work considers mainly the properties that can be theoretically proven on the 
OT solutions or algorithms (e.g., from the D1 section). Theoretical guarantees for machine 
learning are a domain of expertise in the team (and collaborations).

As a distance between distributions, both continuous and empirical, the Wasserstein 
distance have been used in most situations where the Kullback-Leibler (KL) divergence 
usually appears. Indeed, the KL divergence is pervasive in statistical machine learning but 
may be not defined (e.g., infinite value, depending on the supports of the distributions). The 
Wasserstein distance gives meaningful values even for disjoint supports and thus provide 
better “gradient” information for optimization algorithms. As a robust distance, the 
Wasserstein distance has been used in many domains: domain adaptation, generative 
adversarial networks, auto-encoders (WAE), variational inference, etc. Theoretical work exist
that derive generalization guarantees based on the Wasserstein distance (e.g., our work on 
metric learning [15]).

When designing new OT formulations and algorithms, in approaches like OTT (e.g., that use 
a stochastic Frank-Wolfe or projected mirror descent), we manage to prove the convergence 
of the algorithm, but no generalization aspects are taken into account. The standard (and 
entropic) optimal transport problem has been studied from this perspective (e.g., [21][22]). 
However, deriving sample complexity and generalization bounds for structured 
transport (GW, OTT) is an open and difficult problem.

Formulating the problem of optimal transport in a probabilistic manner opens the reasoning 
about uncertainty and generalization. In particular, a Bayesian formulation can be readily 
reused from [18] (which uses it to handle stochastic cost functions). Indeed, entropic optimal 
transport with empirical distributions naturally involves categorical (multinomial) distributions 
and the Bayesian formulation adds Dirichlet priors to it. Generally, leveraging the PAC-
Bayesian (PB) framework for optimal transport is a very promising direction. Sliced 
Wasserstein, as an averaging method (across slices), lends itself quite directly to the voting 
view of PB and a recent preprint explores this [23]. The PB framework is not limited to this 
voting setting and it is able to produce extremely tight generalization bound in the case of 
Categorical/Dirichlet conjugacy as we have shown in [24] and it can most probably be 
adapted for the Bayesian OT formulation. A more exploratory direction of work around the 
PB framework is the use of “disintegrated PB bounds” that can be related to stochastic 
optimization methods such as the ones used for OTT.

D3) Direction 3: OT for structured latent representations

This direction of work is driven by a particular application domain but might still suggest 
some developments for D1 and D2. This line of work is related to a starting Ph.D. thesis on 
unsupervised object detection, in which some auto-encoders with very structured latent 
spaces are used [25][26]: the latent space represents the object properties, the encoder is an
object detector and the decoder a renderer. The idea behind these models is to automatically
decompose a set of images into their constituent recurrent objects. The question of using 
OT to regularize and transfer structured latent representations to speed up and improve 
unsupervised and self supervised learning could be very interesting to explore. The 
Ph.D. student thesis will not explore this direction (the focus of the thesis is on some other 
aspects). With additional time, I could work in synergy with the Ph.D. student and leverage 
my background on motif mining, probabilistic models and optimal transport to explore this 
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direction by myself, developing transfer or inference approaches e.g. in the vein of [27] but 
with structured representations.

D4) Direction 4: OT, partial differential equations (PDE) and diffusion processes

This direction of work consists in exploring and getting a deeper understanding of the 
link between OT and partial differential equations (PDE), which is a stimulating task 
involving a lot of literature review, analysis and synthesis.  This kind of domain-broadening 
activity requires extensive research-focused time, that the IUF will provide. Having started to 
work, within the laboratory, with physicists working on the theory and applications of laser-
mater interaction, PDE are pervasive: they may be known, they may need to learned from 
data or their general form may be supposed and used as a guide/regularization for learning. 
As such, bridging PDE and OT could be a way to unify the physical knowledge (side-
information from a machine learning perspective) with the actual machine learning 
optimization problems. I now strongly believe that it is key and mutually beneficial for both 
domains (machine learning, and laser-mater interaction) to further understand the links 
between current learning methods and physical models of the mater. I am also convinced 
that my particular background (at the crossing of probabilistic modeling, theory of machine 
learning, deep learning, structured optimal transport, etc.) can give me an original viewpoint 
and instill a dynamic in the collaboration between ML and laser-matter interaction physics at 
the lab.

In parallel to purely understanding the inter-relation between OT and PDEs, there are already
concrete directions that I will explore, both theoretically or empirically. Various OT research 
has already underlined several links with differential equations (e.g., [28][29][30]) but the 
relation to structured OT remains to be studied. Also, recently, very successful methods for 
density modeling (e.g. for image generation) have used diffusion models (as stochastic or 
deterministic PDE) to generate training samples for learning the reverse (denoising) diffusion
process. As such, an interesting research direction consists in expliciting the link between 
OT and diffusion models. Diffusion approaches actually optimize the same objective as the
score-based generative models and more precisely denoising score matching approaches. 
There is a parallel to be drawn between the score network that is learned in these methods 
and the (gradient) of the Kantorovich-Rubinstein duality function that yields the “critic” 
network used in Wasserstein GANs. While not formulated in these exact terms (on the OT 
side, it uses the Benamou-Brenier formulation), a recent preprint [31] shows an equivalence 
(mathematically proved for a special case and empirically verified in all tested cases) 
between the diffusion models and the optimal transport to a unit normal distribution. This link 
prompts for the question about whether the general OT problem (and further structured OT 
problems) between two distribution is also equivalent to two (independent) diffusion 
processes, and if not, whether bounds can be derived and can be used for initialization or as 
an elementary step in a iterative algorithm. The links with recent PAC-Bayesian bounds 
based on trajectories are also promising to explore [32] in relation with D2.
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