
Deep Equilibrium Models
and Implicit Layers

2021-11-18
Rémi Emonet

Data Intelligence Meeting

An introduction by a noob...

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 2 / 24

Recurrent Convolutional Neural Networks for Scene Labeling

Pedro O. Pinheiro1,2

Ronan Collober t2

1Ecole Polytechnique Fédérale de Lausanne (EPFL)
2Idiap Research Institute, Martigny, Switzerland

Proceedings of the 31 s t International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

f
f

f ◦ f

f

f ◦ f

f ◦ f ◦ f

Figure 2. System considering one (f), two (f ◦ f) and three

(f ◦ f ◦ f) instances of the network. In all three cases, the ar-

chitecture produces labels (1 × 1 output planes) corresponding to

the pixel at the center of the input patch. Each network instance

is fed with the previous label predictions, as well as a RGB patch

surrounding the pixel of interest. For space constraints, we do not

show the label maps of the f rst instances, as they are zero maps.

Adding network instances increases the context patch size seen by

the architecture (both RGB pixels and previous predicted labels).

A quick story

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 4 / 24

Quick review of Deep Networks and ResNETs

A simple deep network

x zf1 f2 f3 f4 f5 f6

When going deeper, issue with "vanishing gradient"

ReLU helps a lot

but still…

 Rémi Emonet − 6 / 24

Residual Network to go deeper
Principle:

add skip connections

i.e., for each layer: output = input + a value computed by a residual block

x zf1 f2 f3 f4 f5 f6+ + + + + +

NB: input and output have the same dimension (to make the sum).

often, is made of a few Conv/linear, with BatchNorm, ReLUf i

 Rémi Emonet − 7 / 24

Input injection

x

zf1 f2 f3 f4 f5 f6

Principle:

pass the (original) input to every layer

NB: actually used in other models like Deep Gaussian Processes

 Rémi Emonet − 8 / 24

Shared parameters to allow recurrent formulation

x

0 zf f f f f f

Principle:

use the same

can be as expressive as the original network

see next slide

initial condition, e.g.,

making the network recurrent

more recurrent iterations = deeper network

f

z =0 0
x

zf

 Rémi Emonet − 9 / 24

Proof: a 3 layer
network as a
big(ger) reccurrent
network

 Rémi Emonet − 10 / 24

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 11 / 24

Fixed point iteration layer, Deep Equilibrium (DEQ)

Limitation of gradient descent and deep models?

x zf1 f2 f3 f4 f5 f6

x

0 zf f f f f f

Do you see/know any problem with big/deep networks (incl. ResNETs)?

Need to store intermediate activations

… huge memory requirements (at training time)

… can do "checkpointing" (not a perfect solution)
 Rémi Emonet − 13 / 24

Fixed point iteration: an example of implicit layer
Implicit layer

instead of telling how to compute the output from the input (explicit)

we rather tell what the output should verify

and how we actually �nd the output is secondary

Fixed point layers are implicit layers:

given a function parametrized by , and an input

�nd the output , which is a �xed point of , i.e.,

x
zf

f θ θ x

z⋆ f (x, .)θ

z =⋆ f (x, z)θ
⋆

 Rémi Emonet − 14 / 24

Fixed point iteration layers are (already) auto-differentiable
Implicit layer de�nition:

given a function parametrized by , and an input

�nd the output , which is a �xed point of , i.e.,

Possible solution:

iteratively apply until convergence

like an in�nitely deep network

reccurent iterations are unrolled: , with

computing the gradient is done by the frameworks

… but requires storing intermediate results

… let’s call maths to the rescue

x
zf

f θ θ x

z⋆ f (x, .)θ

z =⋆ f (x, z)θ
⋆

f θ

z =⋆ g(g(g(g(g(g(...g(g(g(0))))))))) g : z ↦ f (x, z)θ

 Rémi Emonet − 15 / 24

Differentiating an implicit layer?

Backprop in automatic differentiation frameworks

Two differentiation modes

JVP, Jacobian-Vector-Product, need to implement

VJP, Vector-Jacobian-Product, need to implement

NB: "backprop" is VJP

Forward pass: use any solver to get such that

Backward pass:

need to implement VJP for both and , i.e.,

 for parameter updates

 to propagate gradient on the input (preceding layers)

spoiler alert (see next slide), the solution also involves a �xed point problem

… more precisely, integrating into a deep/differentiation-based learning framework

v ↦ ∂ f(x).v0

w ↦ w .∂ f(x)T
0

z⋆ z =⋆ f (x, z)θ
⋆ =def

z(θ,x)

θ x

w ↦ w .∂ z(θ,x)T
0

w ↦ w .∂ z(θ,x)T
1

 Rémi Emonet − 16 / 24

Let’s differentiate an implicit layer (VJP)
We consider the gradient w.r.t. , and omit the �xed for conciseness, i.e. we want

We take the equilibrium equation , or and differentiate w.r.t. the input

for the , we left-multiply by then de�ne a new variable

the is given by the framework, it only remains to �nd , that we can rewrite

(exactly the same with)

w ↦ w .∂ z(θ,x)T
1

x θ w ↦ V JP (z, (x),w)0
T =

def
w .∂ z(x)T

0

z =⋆ f(x, z)⋆ z(x) = f(x, z(x)) x

 z(x)
∂ x

∂

∂ z(x)0

[I − ∂ f(x, z(x))]∂ z(x)1 0

∂ z(x)0

= f(x, z(x))
∂ x

∂

= ∂ f(x, z(x)) + ∂ f(x, z(x))∂ z(x)0 1 0

= ∂ f(x, z(x))0

= [I − ∂ f(x, z(x))] ∂ f(x, z(x))1
−1

0

(1)

(2)

(3)

(4)

V JP wT u

w .∂ z(x)T
0

w .∂ z(x)T
0

= w [I − ∂ f(x, z(x))] ∂ f(x, z(x))T
1

−1
0

u ∂ f(x, z(x)) = V JP (f , (x, z(x)), u)=def T
0 0

T

(5)

(6)

V JP u =T w [I −T ∂ f(x, z(x))]1
−1

u [I − ∂ f(x, z(x))]T
1

u − u ∂ f(x, z(x))T T
1

uT

= w [I − ∂ f(x, z(x))] [I − ∂ f(x, z(x))]T
1

−1
1

= wT

= w + u ∂ f(x, z(x))... a fixed point equation!T T
1

(7)

(8)

(9)

θ
 Rémi Emonet − 17 / 24

NB: No intermediate memory
but strictly not faster

discussion

size, number of parameters and expressive power

 Rémi Emonet − 18 / 24

NB: Any solver can be used
Iterative application of is a naive implementation (linear)

Newton–Raphson’s method (quadratic, uses differentiation)

�nding such that

can be done by �nding zeros of

Anderson acceleration

accelerates the convergence of the �xed-point sequence

(optimally) combine previous evaluations

links with GMRES

f θ

W

z⋆ z =⋆ f (x, z)θ
⋆

z ↦ f (x, z) −θ z

W

W

 Rémi Emonet − 19 / 24

https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Anderson%20acceleration
https://en.wikipedia.org/wiki/Generalized%20minimal%20residual%20method

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 20 / 24

Other Implicit Layers

Some stuff
Neural ODEs odeint(f, x, t0, t1, θ)

when we care about intermediate values of

time reversible

continuous normalizing �ow

Differentiable optimization

cvxpy as solver for implicitly speci�ed layer

differentiable thanks to cvxpylayers

` `

t

 Rémi Emonet − 22 / 24

Links and pointers
Tutorial

http://implicit-layers-tutorial.org/ (companion website)

https://www.youtube.com/watch?v=MX1RJELWONc (video)

Neural ODEs, norm. �ow

Neural SDE

DEQ vs Neural ODEs

DEQ or Neural ODEs?

Implicit function theorem etc

Coding it in jax

Results

https://youtu.be/MX1RJELWONc?t=3674 (WikiText-103)

https://youtu.be/MX1RJELWONc?t=3789 (image, multiscale)

cvxpy layers https://github.com/cvxgrp/cvxpylayers

http://implicit-layers-tutorial.org/
https://www.youtube.com/watch?v=MX1RJELWONc
https://youtu.be/MX1RJELWONc?t=3914
https://youtu.be/MX1RJELWONc?t=5424
https://youtu.be/MX1RJELWONc?t=4629
https://youtu.be/MX1RJELWONc?t=6225
https://youtu.be/MX1RJELWONc?t=1580
https://youtu.be/MX1RJELWONc?t=2661
https://youtu.be/MX1RJELWONc?t=3674
https://youtu.be/MX1RJELWONc?t=3789
https://github.com/cvxgrp/cvxpylayers

Discussion, Questions?

