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Figure 2. System considering one (f ), two (f ◦ f ) and three

(f ◦ f ◦ f ) instances of the network. In all three cases, the ar-

chitecture produces labels (1 × 1 output planes) corresponding to

the pixel at the center of the input patch. Each network instance

is fed with the previous label predictions, as well as a RGB patch

surrounding the pixel of interest. For space constraints, we do not

show the label maps of the f rst instances, as they are zero maps.

Adding network instances increases the context patch size seen by

the architecture (both RGB pixels and previous predicted labels).

A quick story
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Quick review of Deep Networks and ResNETs



A simple deep network

x zf1 f2 f3 f4 f5 f6

When going deeper, issue with "vanishing gradient"

ReLU helps a lot

but still…
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Residual Network to go deeper
Principle:

add skip connections

i.e., for each layer: output = input + a value computed by a residual block

x zf1 f2 f3 f4 f5 f6+ + + + + +

NB: input and output have the same dimension (to make the sum).

often,  is made of a few Conv/linear, with BatchNorm, ReLUf ​i
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Input injection

x

zf1 f2 f3 f4 f5 f6

Principle:

pass the (original) input to every layer

NB: actually used in other models like Deep Gaussian Processes
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Shared parameters to allow recurrent formulation

x

0 zf f f f f f

Principle:

use the same 

can be as expressive as the original network

see next slide

initial condition, e.g., 

making the network recurrent

more recurrent iterations = deeper network

f

z ​ =0 0
x

zf
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Proof: a 3 layer
network as a
big(ger) reccurrent
network
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Fixed point iteration layer, Deep Equilibrium (DEQ)



Limitation of gradient descent and deep models?

x zf1 f2 f3 f4 f5 f6

x

0 zf f f f f f

Do you see/know any problem with big/deep networks (incl. ResNETs)?

Need to store intermediate activations

… huge memory requirements (at training time)

… can do "checkpointing" (not a perfect solution)
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Fixed point iteration: an example of implicit layer
Implicit layer

instead of telling how to compute the output from the input (explicit)

we rather tell what the output should verify

and how we actually find the output is secondary

Fixed point layers are implicit layers:

given a function  parametrized by , and an input 

find the output , which is a fixed point of , i.e., 


x
zf

f ​θ θ x

z⋆ f ​(x, .)θ

z =⋆ f ​(x, z )θ
⋆
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Fixed point iteration layers are (already) auto-differentiable
Implicit layer definition:

given a function  parametrized by , and an input 

find the output , which is a fixed point of , i.e., 


Possible solution:

iteratively apply  until convergence

like an infinitely deep network

reccurent iterations are unrolled: , with 

computing the gradient is done by the frameworks

… but requires storing intermediate results

… let’s call maths to the rescue

x
zf

f ​θ θ x

z⋆ f ​(x, .)θ

z =⋆ f ​(x, z )θ
⋆

f ​θ

z =⋆ g(g(g(g(g(g(...g(g(g(0))))))))) g : z ↦ f ​(x, z)θ
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Differentiating an implicit layer?

Backprop in automatic differentiation frameworks

Two differentiation modes

JVP, Jacobian-Vector-Product, need to implement 

VJP, Vector-Jacobian-Product, need to implement 

NB: "backprop" is VJP

Forward pass: use any solver to get  such that 

Backward pass:

need to implement VJP for both  and , i.e.,

 for parameter updates

 to propagate gradient on the input (preceding layers)

spoiler alert (see next slide), the solution also involves a fixed point problem

… more precisely, integrating into a deep/differentiation-based learning framework

v ↦ ∂ ​f(x).v0

w ↦ w .∂ ​f(x)T
0

z⋆ z =⋆ f ​(x, z )θ
⋆ =def

z(θ,x)

θ x

w ↦ w .∂ ​z(θ,x)T
0

w ↦ w .∂ ​z(θ,x)T
1

 Rémi Emonet − 16 / 24



Let’s differentiate an implicit layer (VJP )
We consider the gradient w.r.t. , and omit the fixed  for conciseness, i.e. we want 

We take the equilibrium equation , or  and differentiate w.r.t. the input 

for the , we left-multiply by  then define a new variable 

the  is given by the framework, it only remains to find , that we can rewrite

(exactly the same with )

w ↦ w .∂ ​z(θ,x)T
1

x θ w ↦ V JP ​(z, (x),w )0
T =

def
w .∂ ​z(x)T

0

z =⋆ f(x, z )⋆ z(x) = f(x, z(x)) x

​ ​

​z(x)
∂ ​x

∂

∂ ​z(x)0

[I − ∂ ​f(x, z(x))]∂ ​z(x)1 0

∂ ​z(x)0

= ​f(x, z(x))
∂ ​x

∂

= ∂ ​f(x, z(x)) + ∂ ​f(x, z(x))∂ ​z(x)0 1 0

= ∂ ​f(x, z(x))0

= [I − ∂ ​f(x, z(x))] ∂ ​f(x, z(x))1
−1

0

(1)

(2)

(3)

(4)

V JP wT u

​ ​

w .∂ ​z(x)T
0

w .∂ ​z(x)T
0

= w [I − ∂ ​f(x, z(x))] ∂ ​f(x, z(x))T
1

−1
0

u ∂ ​f(x, z(x)) = V JP ​(f , (x, z(x)), u )=def T
0 0

T

(5)

(6)

V JP u =T w [I −T ∂ ​f(x, z(x))]1
−1

​ ​

u [I − ∂ ​f(x, z(x))]T
1

u − u ∂ ​f(x, z(x))T T
1

uT

= w [I − ∂ ​f(x, z(x))] [I − ∂ ​f(x, z(x))]T
1

−1
1

= wT

= w + u ∂ ​f(x, z(x))... a fixed point equation!T T
1

(7)

(8)

(9)

θ
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NB: No intermediate memory
but strictly not faster

discussion

size, number of parameters and expressive power
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NB: Any solver can be used
Iterative application of  is a naive implementation (linear)

Newton–Raphson’s method  (quadratic, uses differentiation)

finding  such that 

can be done by finding zeros of 

Anderson acceleration

accelerates the convergence of the fixed-point sequence

(optimally) combine previous evaluations

links with GMRES

f ​θ

W

z⋆ z =⋆ f ​(x, z )θ
⋆

z ↦ f ​(x, z) −θ z

W

W
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https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Anderson%20acceleration
https://en.wikipedia.org/wiki/Generalized%20minimal%20residual%20method
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Other Implicit Layers



Some stuff
Neural ODEs odeint(f, x, t0, t1, θ)

when we care about intermediate values of 

time reversible

continuous normalizing flow

Differentiable optimization

cvxpy as solver for implicitly specified layer

differentiable thanks to cvxpylayers

` `

t
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Links and pointers
Tutorial

http://implicit-layers-tutorial.org/ (companion website)

https://www.youtube.com/watch?v=MX1RJELWONc (video)

Neural ODEs, norm. flow

Neural SDE

DEQ vs Neural ODEs

DEQ or Neural ODEs?

Implicit function theorem etc

Coding it in jax

Results

https://youtu.be/MX1RJELWONc?t=3674 (WikiText-103)

https://youtu.be/MX1RJELWONc?t=3789 (image, multiscale)

cvxpy layers https://github.com/cvxgrp/cvxpylayers

http://implicit-layers-tutorial.org/
https://www.youtube.com/watch?v=MX1RJELWONc
https://youtu.be/MX1RJELWONc?t=3914
https://youtu.be/MX1RJELWONc?t=5424
https://youtu.be/MX1RJELWONc?t=4629
https://youtu.be/MX1RJELWONc?t=6225
https://youtu.be/MX1RJELWONc?t=1580
https://youtu.be/MX1RJELWONc?t=2661
https://youtu.be/MX1RJELWONc?t=3674
https://youtu.be/MX1RJELWONc?t=3789
https://github.com/cvxgrp/cvxpylayers


Discussion, Questions?


