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Figure 2. System considering one (f ), two (f ◦ f ) and three

(f ◦ f ◦ f ) instances of the network. In all three cases, the ar-

chitecture produces labels (1 × 1 output planes) corresponding to

the pixel at the center of the input patch. Each network instance

is fed with the previous label predictions, as well as a RGB patch

surrounding the pixel of interest. For space constraints, we do not

show the label maps of the f rst instances, as they are zero maps.

Adding network instances increases the context patch size seen by

the architecture (both RGB pixels and previous predicted labels).

A quick story
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Quick review of Deep Networks and ResNETs



A simple deep network

x zf1 f2 f3 f4 f5 f6

When going deeper, issue with "vanishing gradient"

ReLU helps a lot

but still…
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Residual Network to go deeper
Principle:

add skip connections

i.e., for each layer: output = input + a value computed by a residual block

x zf1 f2 f3 f4 f5 f6+ + + + + +

NB: input and output have the same dimension (to make the sum).

often,  is made of a few Conv/linear, with BatchNorm, ReLUf  i
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Input injection

x

zf1 f2 f3 f4 f5 f6

Principle:

pass the (original) input to every layer

NB: actually used in other models like Deep Gaussian Processes
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Shared parameters to allow recurrent formulation

x

0 zf f f f f f

Principle:

use the same 

can be as expressive as the original network

see next slide

initial condition, e.g., 

making the network recurrent

more recurrent iterations = deeper network

f

z  =0 0
x

zf
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Proof: a 3 layer
network as a
big(ger) reccurrent
network
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Fixed point iteration layer, Deep Equilibrium (DEQ)



Limitation of gradient descent and deep models?

x zf1 f2 f3 f4 f5 f6

x

0 zf f f f f f

Do you see/know any problem with big/deep networks (incl. ResNETs)?

Need to store intermediate activations

… huge memory requirements (at training time)

… can do "checkpointing" (not a perfect solution)
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Fixed point iteration: an example of implicit layer
Implicit layer

instead of telling how to compute the output from the input (explicit)

we rather tell what the output should verify

and how we actually �nd the output is secondary

Fixed point layers are implicit layers:

given a function  parametrized by , and an input 

�nd the output , which is a �xed point of , i.e.,  

x
zf

f  θ θ x

z⋆ f  (x, .)θ

z =⋆ f  (x, z )θ
⋆
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Fixed point iteration layers are (already) auto-differentiable
Implicit layer de�nition:

given a function  parametrized by , and an input 

�nd the output , which is a �xed point of , i.e.,  

Possible solution:

iteratively apply  until convergence

like an in�nitely deep network

reccurent iterations are unrolled: , with 

computing the gradient is done by the frameworks

… but requires storing intermediate results

… let’s call maths to the rescue

x
zf

f  θ θ x

z⋆ f  (x, .)θ

z =⋆ f  (x, z )θ
⋆

f  θ

z =⋆ g(g(g(g(g(g(...g(g(g(0))))))))) g : z ↦ f  (x, z)θ
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Differentiating an implicit layer?

Backprop in automatic differentiation frameworks

Two differentiation modes

JVP, Jacobian-Vector-Product, need to implement 

VJP, Vector-Jacobian-Product, need to implement 

NB: "backprop" is VJP

Forward pass: use any solver to get  such that 

Backward pass:

need to implement VJP for both  and , i.e.,

 for parameter updates

 to propagate gradient on the input (preceding layers)

spoiler alert (see next slide), the solution also involves a �xed point problem

… more precisely, integrating into a deep/differentiation-based learning framework

v ↦ ∂  f(x).v0

w ↦ w .∂  f(x)T
0

z⋆ z =⋆ f  (x, z )θ
⋆ =def

z(θ,x)

θ x

w ↦ w .∂  z(θ,x)T
0

w ↦ w .∂  z(θ,x)T
1
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Let’s differentiate an implicit layer (VJP )
We consider the gradient w.r.t. , and omit the �xed  for conciseness, i.e. we want 

We take the equilibrium equation , or  and differentiate w.r.t. the input 

for the , we left-multiply by  then de�ne a new variable 

the  is given by the framework, it only remains to �nd , that we can rewrite

(exactly the same with )

w ↦ w .∂  z(θ,x)T
1

x θ w ↦ V JP  (z, (x),w )0
T =

def
w .∂  z(x)T

0

z =⋆ f(x, z )⋆ z(x) = f(x, z(x)) x

  

 z(x)
∂  x

∂

∂  z(x)0

[I − ∂  f(x, z(x))]∂  z(x)1 0

∂  z(x)0

=  f(x, z(x))
∂  x

∂

= ∂  f(x, z(x)) + ∂  f(x, z(x))∂  z(x)0 1 0

= ∂  f(x, z(x))0

= [I − ∂  f(x, z(x))] ∂  f(x, z(x))1
−1

0

(1)

(2)

(3)

(4)

V JP wT u

  

w .∂  z(x)T
0

w .∂  z(x)T
0

= w [I − ∂  f(x, z(x))] ∂  f(x, z(x))T
1

−1
0

u ∂  f(x, z(x)) = V JP  (f , (x, z(x)), u )=def T
0 0

T

(5)

(6)

V JP u =T w [I −T ∂  f(x, z(x))]1
−1

  

u [I − ∂  f(x, z(x))]T
1

u − u ∂  f(x, z(x))T T
1

uT

= w [I − ∂  f(x, z(x))] [I − ∂  f(x, z(x))]T
1

−1
1

= wT

= w + u ∂  f(x, z(x))... a fixed point equation!T T
1

(7)

(8)

(9)

θ
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NB: No intermediate memory
but strictly not faster

discussion

size, number of parameters and expressive power
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NB: Any solver can be used
Iterative application of  is a naive implementation (linear)

Newton–Raphson’s method  (quadratic, uses differentiation)

�nding  such that 

can be done by �nding zeros of 

Anderson acceleration

accelerates the convergence of the �xed-point sequence

(optimally) combine previous evaluations

links with GMRES

f  θ

W

z⋆ z =⋆ f  (x, z )θ
⋆

z ↦ f  (x, z) −θ z

W

W
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https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Anderson%20acceleration
https://en.wikipedia.org/wiki/Generalized%20minimal%20residual%20method
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Other Implicit Layers



Some stuff
Neural ODEs odeint(f, x, t0, t1, θ)

when we care about intermediate values of 

time reversible

continuous normalizing �ow

Differentiable optimization

cvxpy as solver for implicitly speci�ed layer

differentiable thanks to cvxpylayers

` `

t
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Links and pointers
Tutorial

http://implicit-layers-tutorial.org/ (companion website)

https://www.youtube.com/watch?v=MX1RJELWONc (video)

Neural ODEs, norm. �ow

Neural SDE

DEQ vs Neural ODEs

DEQ or Neural ODEs?

Implicit function theorem etc

Coding it in jax

Results

https://youtu.be/MX1RJELWONc?t=3674 (WikiText-103)

https://youtu.be/MX1RJELWONc?t=3789 (image, multiscale)

cvxpy layers https://github.com/cvxgrp/cvxpylayers

http://implicit-layers-tutorial.org/
https://www.youtube.com/watch?v=MX1RJELWONc
https://youtu.be/MX1RJELWONc?t=3914
https://youtu.be/MX1RJELWONc?t=5424
https://youtu.be/MX1RJELWONc?t=4629
https://youtu.be/MX1RJELWONc?t=6225
https://youtu.be/MX1RJELWONc?t=1580
https://youtu.be/MX1RJELWONc?t=2661
https://youtu.be/MX1RJELWONc?t=3674
https://youtu.be/MX1RJELWONc?t=3789
https://github.com/cvxgrp/cvxpylayers


Discussion, Questions?


