
Deep Equilibrium Models

and Implicit Layers

2021-11-18
Rémi Emonet

Data Intelligence Meeting

An introduction by a noob...

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 2 / 24

Recurrent Convolutional Neural Networks for Scene Labeling

Pedro O. Pinheiro1,2

Ronan Collober t2

1Ecole Polytechnique Fédérale de Lausanne (EPFL)
2Idiap Research Institute, Martigny, Switzerland

Proceedings of the 31 s t International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

f
f

f ◦ f

f

f ◦ f

f ◦ f ◦ f

Figure 2. System considering one (f), two (f ◦ f) and three

(f ◦ f ◦ f) instances of the network. In all three cases, the ar-

chitecture produces labels (1 × 1 output planes) corresponding to

the pixel at the center of the input patch. Each network instance

is fed with the previous label predictions, as well as a RGB patch

surrounding the pixel of interest. For space constraints, we do not

show the label maps of the f rst instances, as they are zero maps.

Adding network instances increases the context patch size seen by

the architecture (both RGB pixels and previous predicted labels).

A quick story

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 4 / 24

Quick review of Deep Networks and ResNETs

A simple deep network

x zf1 f2 f3 f4 f5 f6

When going deeper, issue with "vanishing gradient"

ReLU helps a lot

but still…

 Rémi Emonet − 6 / 24

Residual Network to go deeper
Principle:

add skip connections

i.e., for each layer: output = input + a value computed by a residual block

x zf1 f2 f3 f4 f5 f6+ + + + + +

NB: input and output have the same dimension (to make the sum).

often, is made of a few Conv/linear, with BatchNorm, ReLUf ​i

 Rémi Emonet − 7 / 24

Input injection

x

zf1 f2 f3 f4 f5 f6

Principle:

pass the (original) input to every layer

NB: actually used in other models like Deep Gaussian Processes

 Rémi Emonet − 8 / 24

Shared parameters to allow recurrent formulation

x

0 zf f f f f f

Principle:

use the same

can be as expressive as the original network

see next slide

initial condition, e.g.,

making the network recurrent

more recurrent iterations = deeper network

f

z ​ =0 0
x

zf

 Rémi Emonet − 9 / 24

Proof: a 3 layer
network as a
big(ger) reccurrent
network

 Rémi Emonet − 10 / 24

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 11 / 24

Fixed point iteration layer, Deep Equilibrium (DEQ)

Limitation of gradient descent and deep models?

x zf1 f2 f3 f4 f5 f6

x

0 zf f f f f f

Do you see/know any problem with big/deep networks (incl. ResNETs)?

Need to store intermediate activations

… huge memory requirements (at training time)

… can do "checkpointing" (not a perfect solution)
 Rémi Emonet − 13 / 24

Fixed point iteration: an example of implicit layer
Implicit layer

instead of telling how to compute the output from the input (explicit)

we rather tell what the output should verify

and how we actually find the output is secondary

Fixed point layers are implicit layers:

given a function parametrized by , and an input

find the output , which is a fixed point of , i.e.,

x
zf

f ​θ θ x

z⋆ f ​(x, .)θ

z =⋆ f ​(x, z)θ
⋆

 Rémi Emonet − 14 / 24

Fixed point iteration layers are (already) auto-differentiable
Implicit layer definition:

given a function parametrized by , and an input

find the output , which is a fixed point of , i.e.,

Possible solution:

iteratively apply until convergence

like an infinitely deep network

reccurent iterations are unrolled: , with

computing the gradient is done by the frameworks

… but requires storing intermediate results

… let’s call maths to the rescue

x
zf

f ​θ θ x

z⋆ f ​(x, .)θ

z =⋆ f ​(x, z)θ
⋆

f ​θ

z =⋆ g(g(g(g(g(g(...g(g(g(0))))))))) g : z ↦ f ​(x, z)θ

 Rémi Emonet − 15 / 24

Differentiating an implicit layer?

Backprop in automatic differentiation frameworks

Two differentiation modes

JVP, Jacobian-Vector-Product, need to implement

VJP, Vector-Jacobian-Product, need to implement

NB: "backprop" is VJP

Forward pass: use any solver to get such that

Backward pass:

need to implement VJP for both and , i.e.,

 for parameter updates

 to propagate gradient on the input (preceding layers)

spoiler alert (see next slide), the solution also involves a fixed point problem

… more precisely, integrating into a deep/differentiation-based learning framework

v ↦ ∂ ​f(x).v0

w ↦ w .∂ ​f(x)T
0

z⋆ z =⋆ f ​(x, z)θ
⋆ =def

z(θ,x)

θ x

w ↦ w .∂ ​z(θ,x)T
0

w ↦ w .∂ ​z(θ,x)T
1

 Rémi Emonet − 16 / 24

Let’s differentiate an implicit layer (VJP)
We consider the gradient w.r.t. , and omit the fixed for conciseness, i.e. we want

We take the equilibrium equation , or and differentiate w.r.t. the input

for the , we left-multiply by then define a new variable

the is given by the framework, it only remains to find , that we can rewrite

(exactly the same with)

w ↦ w .∂ ​z(θ,x)T
1

x θ w ↦ V JP ​(z, (x),w)0
T =

def
w .∂ ​z(x)T

0

z =⋆ f(x, z)⋆ z(x) = f(x, z(x)) x

​ ​

​z(x)
∂ ​x

∂

∂ ​z(x)0

[I − ∂ ​f(x, z(x))]∂ ​z(x)1 0

∂ ​z(x)0

= ​f(x, z(x))
∂ ​x

∂

= ∂ ​f(x, z(x)) + ∂ ​f(x, z(x))∂ ​z(x)0 1 0

= ∂ ​f(x, z(x))0

= [I − ∂ ​f(x, z(x))] ∂ ​f(x, z(x))1
−1

0

(1)

(2)

(3)

(4)

V JP wT u

​ ​

w .∂ ​z(x)T
0

w .∂ ​z(x)T
0

= w [I − ∂ ​f(x, z(x))] ∂ ​f(x, z(x))T
1

−1
0

u ∂ ​f(x, z(x)) = V JP ​(f , (x, z(x)), u)=def T
0 0

T

(5)

(6)

V JP u =T w [I −T ∂ ​f(x, z(x))]1
−1

​ ​

u [I − ∂ ​f(x, z(x))]T
1

u − u ∂ ​f(x, z(x))T T
1

uT

= w [I − ∂ ​f(x, z(x))] [I − ∂ ​f(x, z(x))]T
1

−1
1

= wT

= w + u ∂ ​f(x, z(x))... a fixed point equation!T T
1

(7)

(8)

(9)

θ
 Rémi Emonet − 17 / 24

NB: No intermediate memory
but strictly not faster

discussion

size, number of parameters and expressive power

 Rémi Emonet − 18 / 24

NB: Any solver can be used
Iterative application of is a naive implementation (linear)

Newton–Raphson’s method (quadratic, uses differentiation)

finding such that

can be done by finding zeros of

Anderson acceleration

accelerates the convergence of the fixed-point sequence

(optimally) combine previous evaluations

links with GMRES

f ​θ

W

z⋆ z =⋆ f ​(x, z)θ
⋆

z ↦ f ​(x, z) −θ z

W

W

 Rémi Emonet − 19 / 24

https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Anderson%20acceleration
https://en.wikipedia.org/wiki/Generalized%20minimal%20residual%20method

Outline
Quick review of Deep Networks and ResNETs

Fixed point iteration layer, Deep Equilibrium (DEQ)

Other Implicit Layers

 Rémi Emonet − 20 / 24

Other Implicit Layers

Some stuff
Neural ODEs odeint(f, x, t0, t1, θ)

when we care about intermediate values of

time reversible

continuous normalizing flow

Differentiable optimization

cvxpy as solver for implicitly specified layer

differentiable thanks to cvxpylayers

` `

t

 Rémi Emonet − 22 / 24

Links and pointers
Tutorial

http://implicit-layers-tutorial.org/ (companion website)

https://www.youtube.com/watch?v=MX1RJELWONc (video)

Neural ODEs, norm. flow

Neural SDE

DEQ vs Neural ODEs

DEQ or Neural ODEs?

Implicit function theorem etc

Coding it in jax

Results

https://youtu.be/MX1RJELWONc?t=3674 (WikiText-103)

https://youtu.be/MX1RJELWONc?t=3789 (image, multiscale)

cvxpy layers https://github.com/cvxgrp/cvxpylayers

http://implicit-layers-tutorial.org/
https://www.youtube.com/watch?v=MX1RJELWONc
https://youtu.be/MX1RJELWONc?t=3914
https://youtu.be/MX1RJELWONc?t=5424
https://youtu.be/MX1RJELWONc?t=4629
https://youtu.be/MX1RJELWONc?t=6225
https://youtu.be/MX1RJELWONc?t=1580
https://youtu.be/MX1RJELWONc?t=2661
https://youtu.be/MX1RJELWONc?t=3674
https://youtu.be/MX1RJELWONc?t=3789
https://github.com/cvxgrp/cvxpylayers

Discussion, Questions?

