OT-based Distillation

How to formulate LM-RNN distillation as an optimal transport problem, more precisely, a fused gromov wasserstein 1-barycenter problem, with a single distribution and no marginal constraint on the barycenter.

> 2021-11-16 Rémi Emonet TAUDoS Meeting @ Saint-Étienne

LM-RNN Distillation Reminders

We start from a learned recurrent model (presentation by Sri)

- We can sample sequences on demand
- We gather an "infinity" of *(one for every token in every sequence we generate)*
 - **points** / latent vectors / hidden states: the internal representation of the LM-RNN
 - **edges** / transitions: from a point to another, annotated with a token/letter

Goal: use this dataset to "learn" an automata (PFA) Remarks

- a good baseline is k-means + stats on transitions
- the actual graph is a tree (but we don't use that)

we generate) tion of the LM-RN

(Wasserstein) Barycenter

Given B distributions $\{\mu^b\}_b$, and weights $\{\lambda_b\}_b$ (with $\sum_b \lambda_b \neq 0$)

$$rgmin_{
u}\sum_{b=1}^{B}\lambda_{b}W(\mu^{b},
u)$$

1-barycenter, B = 1

 $rgmin_{
u} W(\mu,
u)$

We can parametrize/constrain the form u (e.g. few discrete diracs, small graph for GW, ...)

K-means

$rgmin_{\{m{c_k}\}_k,\{m{z_i}\}_i}\sum_{i=1}^{1}d(x_i,m{c_{z_i}})^2$

- c_k : position of the k^{th} cluster mean
- z_i : index of the center that is closest to point x_i

- argı
- T_{ik} the mass of point *i* that is sent to center k • considering the vector T_{i} .

 - the optimal is
 - to set the whole mass to the closest k
 - i.e., $T_{ik} = 0, \ \forall k \neq z_i$
- Notes on Π
 - we do not constain/fix the marginal "on k" (the cluster mass/weight is not fixed)

Wasserstein 1-Barycenter

$$rgmin_{\{m{c_k}\}_k, T\in\Pi} \sum_{i=1}^N \sum_{k=1}^K d(x_i, m{c_k})^2 T_{ik}$$

• c_k the position of the k^{th} cluster mean

Fused-GW 1-Barycenter

The formulation that does distillation.

Principle: a 1-barycenter formulation, with

- a Wasserstein term (k-means like)
 - data: $\{x_i\}_i$ in the latent space
 - barycenter: "cluster means" $\{c_k\}_k$ in the latent space
- a Gromov-Wasserstein term (graph reduction)
 - data: $\{d_{ii'}\}_{i,i'}$ observed transitions (token, one-hot encoded)
 - barycenter with edges between clusters described with $\{d_{kk'}\}_{k,k'}$ (distribution)
 - a loss l_{comp} , to be defined, unperfectly set to l_2^2 for now
- a weighting of these two terms, controlled by α , an hyper-parameter

$$rgmin_{\{m{c_k}\}_k,\{m{d_{kk'}}\}_{k,k'},T\in\Pi} \quad lpha\sum_{i=1}^N\sum_{k=1}^K d(x_i,m{c_k})^2 T_{ik} + (1-lpha)\sum_{i=1}^N\sum_{i'=1}^N\sum_{k=1}^K\sum_{k'=1}^K l_{ ext{comp}}(d_{ii'},m{d_{kk'}}) T_{ik}T_{i'k'}$$

Rémi Emonet – 5 / 9

Optimization Algorithm

Alternating estimation of T and $\{c_k, d_{kk'}\}$ Credit: Tanguy Kerdoncuff

$$rgmin_{\{m{c_k}\}_k,\{m{d_{kk'}}\}_{k,k'},m{T}\in\Pi} \quad lpha\sum_{i=1}^N\sum_{k=1}^K d(x_i,m{c_k})^2 T_{ik} + (1-lpha)\sum_{i=1}^N\sum_{i'=1}^N d(x_i,m{c_k})^2 T_{ik}$$

- Initialize with a random *T*
- Repeat
 - update, with *T* fixed
 - *c_k* as T-weighted means (1)
 - $d_{kk'}$ as in GW 1-barycenter (2)
 - update *T* with the rest fixed (3)
 - using Frank-Wolfe

(repeat with several initializations)

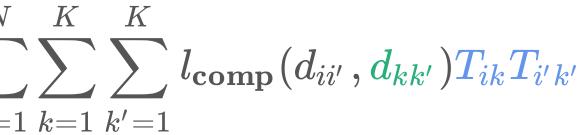
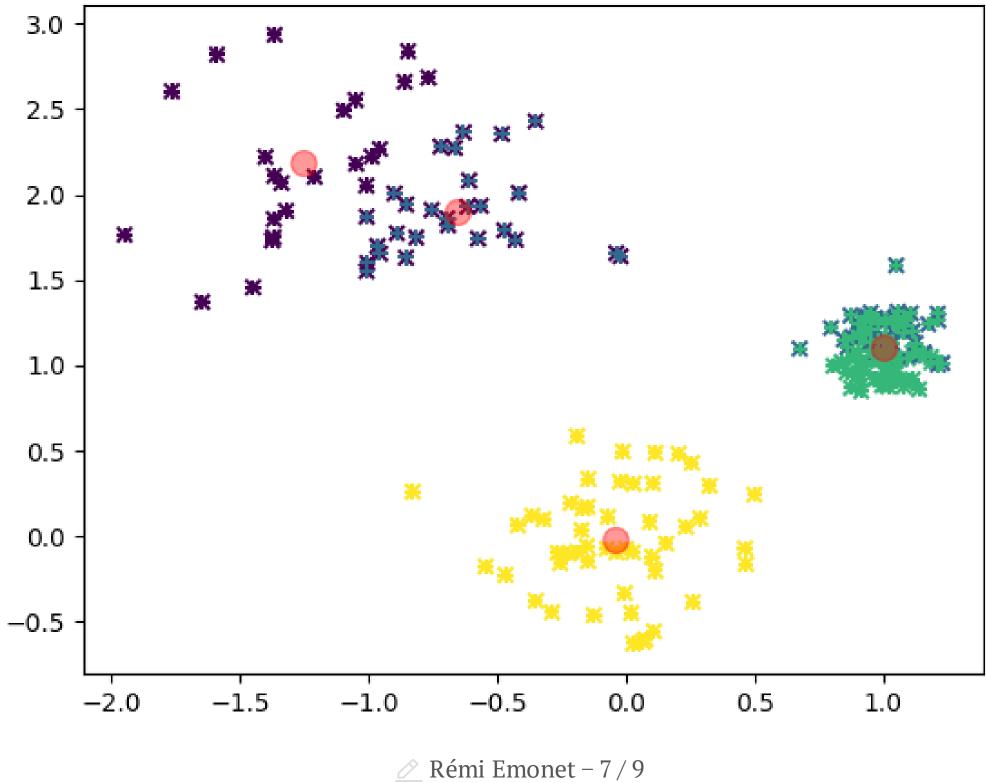


Illustration with α = 1.000 (k-means)



Issues / TO DO

- Used l_2^2 for l_{comp} -> use a KL
- Scalability -> stochastic version
- Tested on synthetic data -> move to real data
- PFA -> sparsity-inducing l_{comp} to have a DFA
- more ideas? suggestions?

Discussion, Questions?