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The Unix Shell

The Unix shell has been around longer than most of its users have been alive. It has survived so long because it's a power tool that allows people to do complex things with just a few keystrokes. More importantly, it helps them combine existing programs in new ways and automate repetitive tasks so that they don't have to type the same things over and over again. Use of the shell is fundamental to using a wide range of other powerful tools and computing resources (including "high-performance computing" supercomputers). These lessons will start you on a path towards using these resources effectively.


Prerequisites

This lesson guides you through the basics of file systems and the shell. If you have stored files on a computer at all and recognize the word “file” and either “directory” or “folder” (two common words for the same thing), you're ready for this lesson.

If you're already comfortable manipulating files and directories, searching for files with grep and find, and writing simple loops and scripts, you probably won't learn much from this lesson.




Getting ready

You need to download some files to follow this lesson:


	Make a new folder in your Desktop called shell-novice.

	Download shell-novice-data.zip and move the file to this folder.

	If it's not unzipped yet, double-click on it to unzip it. You should end up with a new folder called data.

	You can access this folder from the Unix shell with:



$ cd && cd Desktop/shell-novice/data
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Introducing the Shell


Learning Objectives


	Explain how the shell relates to the keyboard, the screen, the operating system, and users' programs.

	Explain when and why command-line interfaces should be used instead of graphical interfaces.





At a high level, computers do four things:


	run programs

	store data

	communicate with each other

	interact with us



They can do the last of these in many different ways, including direct brain-computer links and speech interfaces. Since these are still in their infancy, most of us use windows, icons, mice, and pointers. These technologies didn't become widespread until the 1980s, but their roots go back to Doug Engelbart's work in the 1960s, which you can see in what has been called "The Mother of All Demos".

Going back even further, the only way to interact with early computers was to rewire them. But in between, from the 1950s to the 1980s, most people used line printers. These devices only allowed input and output of the letters, numbers, and punctuation found on a standard keyboard, so programming languages and interfaces had to be designed around that constraint.

This kind of interface is called a command-line interface, or CLI, to distinguish it from a graphical user interface, or GUI, which most people now use. The heart of a CLI is a read-evaluate-print loop, or REPL: when the user types a command and then presses the enter (or return) key, the computer reads it, executes it, and prints its output. The user then types another command, and so on until the user logs off.

This description makes it sound as though the user sends commands directly to the computer, and the computer sends output directly to the user. In fact, there is usually a program in between called a command shell. What the user types goes into the shell, which then figures out what commands to run and orders the computer to execute them. Note, the shell is called the shell because it encloses the operating system in order to hide some of its complexity and make it simpler to interact with.

A shell is a program like any other. What's special about it is that its job is to run other programs rather than to do calculations itself. The most popular Unix shell is Bash, the Bourne Again SHell (so-called because it's derived from a shell written by Stephen Bourne --- this is what passes for wit among programmers). Bash is the default shell on most modern implementations of Unix and in most packages that provide Unix-like tools for Windows.

Using Bash or any other shell sometimes feels more like programming than like using a mouse. Commands are terse (often only a couple of characters long), their names are frequently cryptic, and their output is lines of text rather than something visual like a graph. On the other hand, the shell allows us to combine existing tools in powerful ways with only a few keystrokes and to set up pipelines to handle large volumes of data automatically. In addition, the command line is often the easiest way to interact with remote machines and supercomputers. Familiarity with the shell is near essential to run a variety of specialised tools and resources including high-performance computing systems. As clusters and cloud computing systems become more popular for scientific data crunching, being able to interact with them is becoming a necessary skill. We can build on the command-line skills covered here to tackle a wide range of scientific questions and computational challenges.


Nelle's Pipeline: Starting Point

Nelle Nemo, a marine biologist, has just returned from a six-month survey of the North Pacific Gyre, where she has been sampling gelatinous marine life in the Great Pacific Garbage Patch. She has 300 samples in all, and now needs to:


	Run each sample through an assay machine that will measure the relative abundance of 300 different proteins. The machine's output for a single sample is a file with one line for each protein.

	Calculate statistics for each of the proteins separately using a program her supervisor wrote called goostat.

	Compare the statistics for each protein with corresponding statistics for each other protein using a program one of the other graduate students wrote called goodiff.

	Write up results. Her supervisor would really like her to do this by the end of the month so that her paper can appear in an upcoming special issue of Aquatic Goo Letters.



It takes about half an hour for the assay machine to process each sample. The good news is that it only takes two minutes to set each one up. Since her lab has eight assay machines that she can use in parallel, this step will "only" take about two weeks.

The bad news is that if she has to run goostat and goodiff by hand, she'll have to enter filenames and click "OK" 45,150 times (300 runs of goostat, plus 300x299/2 runs of goodiff). At 30 seconds each, that will take more than two weeks. Not only would she miss her paper deadline, the chances of her typing all of those commands right are practically zero.

The next few lessons will explore what she should do instead. More specifically, they explain how she can use a command shell to automate the repetitive steps in her processing pipeline so that her computer can work 24 hours a day while she writes her paper. As a bonus, once she has put a processing pipeline together, she will be able to use it again whenever she collects more data.







Files and Directories


Learning Objectives


	Explain the similarities and differences between a file and a directory.

	Translate an absolute path into a relative path and vice versa.

	Construct absolute and relative paths that identify specific files and directories.

	Explain the steps in the shell's read-run-print cycle.

	Identify the actual command, flags, and filenames in a command-line call.

	Demonstrate the use of tab completion, and explain its advantages.





The part of the operating system responsible for managing files and directories is called the file system. It organizes our data into files, which hold information, and directories (also called "folders"), which hold files or other directories.

Several commands are frequently used to create, inspect, rename, and delete files and directories. To start exploring them, let's open a shell window:

$


The dollar sign is a prompt, which shows us that the shell is waiting for input; your shell may use a different character as a prompt and may add information before the prompt. When typing commands, either from these lessons or from other sources, do not type the prompt, only the commands that follow it.

Type the command whoami, then press the Enter key (sometimes marked Return) to send the command to the shell. The command's output is the ID of the current user, i.e., it shows us who the shell thinks we are:

$ whoami


nelle

More specifically, when we type whoami the shell:


	finds a program called whoami,

	runs that program,

	displays that program's output, then

	displays a new prompt to tell us that it's ready for more commands.



Next, let's find out where we are by running a command called pwd (which stands for "print working directory"). At any moment, our current working directory is our current default directory, i.e., the directory that the computer assumes we want to run commands in unless we explicitly specify something else. Here, the computer's response is /Users/nelle, which is Nelle's home directory:

$ pwd


/Users/nelle


Home directory

The home directory path will look different on different operating systems. On Linux it will look like /home/nelle, and on Windows it will be similar to C:\Documents and Settings\nelle. Note that it may look slightly different for different versions of Windows.




Alphabet Soup

If the command to find out who we are is whoami, the command to find out where we are ought to be called whereami, so why is it pwd instead? The usual answer is that in the early 1970s, when Unix was first being developed, every keystroke counted: the devices of the day were slow, and backspacing on a teletype was so painful that cutting the number of keystrokes in order to cut the number of typing mistakes was actually a win for usability. The reality is that commands were added to Unix one by one, without any master plan, by people who were immersed in its jargon. The result is as inconsistent as the roolz uv Inglish speling, but we're stuck with it now.



To understand what a "home directory" is, let's have a look at how the file system as a whole is organized. At the top is the root directory that holds everything else. We refer to it using a slash character / on its own; this is the leading slash in /Users/nelle.

Inside that directory are several other directories: bin (which is where some built-in programs are stored), data (for miscellaneous data files), Users (where users' personal directories are located), tmp (for temporary files that don't need to be stored long-term), and so on:


[image: The File System]
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We know that our current working directory /Users/nelle is stored inside /Users because /Users is the first part of its name. Similarly, we know that /Users is stored inside the root directory / because its name begins with /.

Underneath /Users, we find one directory for each user with an account on this machine. The Mummy's files are stored in /Users/imhotep, Wolfman's in /Users/larry, and ours in /Users/nelle, which is why nelle is the last part of the directory's name.
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Path

Notice that there are two meanings for the / character. When it appears at the front of a file or directory name, it refers to the root directory. When it appears inside a name, it's just a separator.



Let's see what's in Nelle's home directory by running ls, which stands for "listing":

$ ls


creatures  molecules           pizza.cfg
data       north-pacific-gyre  solar.pdf
Desktop    notes.txt           writing


[image: Nelle's Home Directory]
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ls prints the names of the files and directories in the current directory in alphabetical order, arranged neatly into columns. We can make its output more comprehensible by using the flag -F, which tells ls to add a trailing / to the names of directories:

$ ls -F


creatures/  molecules/           pizza.cfg
data/       north-pacific-gyre/  solar.pdf
Desktop/    notes.txt            writing/

Here, we can see that /Users/nelle contains six sub-directories. The names that don't have trailing slashes, like notes.txt, pizza.cfg, and solar.pdf, are plain old files. And note that there is a space between ls and -F: without it, the shell thinks we're trying to run a command called ls-F, which doesn't exist.


What's In A Name?

You may have noticed that all of Nelle's files' names are "something dot something". This is just a convention: we can call a file mythesis or almost anything else we want. However, most people use two-part names most of the time to help them (and their programs) tell different kinds of files apart. The second part of such a name is called the filename extension, and indicates what type of data the file holds: .txt signals a plain text file, .pdf indicates a PDF document, .cfg is a configuration file full of parameters for some program or other, and so on.

This is just a convention, albeit an important one. Files contain bytes: it's up to us and our programs to interpret those bytes according to the rules for PDF documents, images, and so on.

Naming a PNG image of a whale as whale.mp3 doesn't somehow magically turn it into a recording of whalesong, though it might cause the operating system to try to open it with a music player when someone double-clicks it.



Now let's take a look at what's in Nelle's data directory by running ls -F data, i.e., the command ls with the arguments -F and data. The second argument --- the one without a leading dash --- tells ls that we want a listing of something other than our current working directory:

$ ls -F data


amino-acids.txt   elements/     morse.txt
pdb/              planets.txt   sunspot.txt

The output shows us that there are four text files and two sub-sub-directories. Organizing things hierarchically in this way helps us keep track of our work: it's possible to put hundreds of files in our home directory, just as it's possible to pile hundreds of printed papers on our desk, but it's a self-defeating strategy.

Notice, by the way that we spelled the directory name data. It doesn't have a trailing slash: that's added to directory names by ls when we use the -F flag to help us tell things apart. And it doesn't begin with a slash because it's a relative path, i.e., it tells ls how to find something from where we are, rather than from the root of the file system.


Parameters vs. Arguments

According to Wikipedia, the terms argument and parameter mean slightly different things. In practice, however, most people use them interchangeably or inconsistently, so we will too.



If we run ls -F /data (with a leading slash) we get a different answer, because /data is an absolute path:

$ ls -F /data


access.log    backup/    hardware.cfg
network.cfg

The leading / tells the computer to follow the path from the root of the file system, so it always refers to exactly one directory, no matter where we are when we run the command.

What if we want to change our current working directory? Before we do this, pwd shows us that we're in /Users/nelle, and ls without any arguments shows us that directory's contents:

$ pwd


/Users/nelle

$ ls


creatures  molecules           pizza.cfg
data       north-pacific-gyre  solar.pdf
Desktop    notes.txt           writing

We can use cd followed by a directory name to change our working directory. cd stands for "change directory", which is a bit misleading: the command doesn't change the directory, it changes the shell's idea of what directory we are in.

$ cd data


cd doesn't print anything, but if we run pwd after it, we can see that we are now in /Users/nelle/data. If we run ls without arguments now, it lists the contents of /Users/nelle/data, because that's where we now are:

$ pwd


/Users/nelle/data

$ ls -F


amino-acids.txt   elements/     morse.txt
pdb/              planets.txt   sunspot.txt

We now know how to go down the directory tree: how do we go up? We could use an absolute path:

$ cd /Users/nelle


but it's almost always simpler to use cd .. to go up one level:

$ pwd


/Users/nelle/data

$ cd ..


.. is a special directory name meaning "the directory containing this one", or more succinctly, the parent of the current directory. Sure enough, if we run pwd after running cd .., we're back in /Users/nelle:

$ pwd


/Users/nelle

The special directory .. doesn't usually show up when we run ls. If we want to display it, we can give ls the -a flag:

$ ls -F -a


./                  creatures/          notes.txt
../                 data/               pizza.cfg
.bash_profile       molecules/          solar.pdf
Desktop/            north-pacific-gyre/ writing/

-a stands for "show all"; it forces ls to show us file and directory names that begin with ., such as .. (which, if we're in /Users/nelle, refers to the /Users directory). As you can see, it also displays another special directory that's just called ., which means "the current working directory". It may seem redundant to have a name for it, but we'll see some uses for it soon. Finally, we also see a file called .bash_profile. This file usually contains settings to customize the shell (terminal). For this lesson material it does not contain any settings. There may also be similar files called .bashrc or .bash_login. The . prefix is used to prevent these configuration files from cluttering the terminal when a standard ls command is used.


Orthogonality

The special names . and .. don't belong to ls; they are interpreted the same way by every program. For example, if we are in /Users/nelle/data, the command ls .. will give us a listing of /Users/nelle. When the meanings of the parts are the same no matter how they're combined, programmers say they are orthogonal: Orthogonal systems tend to be easier for people to learn because there are fewer special cases and exceptions to keep track of.




Nelle's Pipeline: Organizing Files

Knowing just this much about files and directories, Nelle is ready to organize the files that the protein assay machine will create. First, she creates a directory called north-pacific-gyre (to remind herself where the data came from). Inside that, she creates a directory called 2012-07-03, which is the date she started processing the samples. She used to use names like conference-paper and revised-results, but she found them hard to understand after a couple of years. (The final straw was when she found herself creating a directory called revised-revised-results-3.)


Output sorting

Nelle names her directories "year-month-day", with leading zeroes for months and days, because the shell displays file and directory names in alphabetical order. If she used month names, December would come before July; if she didn't use leading zeroes, November ('11') would come before July ('7'). Similarly, putting the year first means that June 2012 will come before June 2013.



Each of her physical samples is labelled according to her lab's convention with a unique ten-character ID, such as "NENE01729A". This is what she used in her collection log to record the location, time, depth, and other characteristics of the sample, so she decides to use it as part of each data file's name. Since the assay machine's output is plain text, she will call her files NENE01729A.txt, NENE01812A.txt, and so on. All 1520 files will go into the same directory.

If she is in her home directory, Nelle can see what files she has using the command:

$ ls north-pacific-gyre/2012-07-03/


This is a lot to type, but she can let the shell do most of the work through what is called tab completion. If she types:

$ ls nor


and then presses tab (the tab key on her keyboard), the shell automatically completes the directory name for her:

$ ls north-pacific-gyre/


If she presses tab again, Bash will add 2012-07-03/ to the command, since it's the only possible completion. Pressing tab again does nothing, since there are 1520 possibilities; pressing tab twice brings up a list of all the files, and so on. This is called tab completion, and we will see it in many other tools as we go on.
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Relative path resolution

If pwd displays /Users/thing, what will ls ../backup display?


	../backup: No such file or directory

	2012-12-01 2013-01-08 2013-01-27

	2012-12-01/ 2013-01-08/ 2013-01-27/

	original pnas_final pnas_sub






ls reading comprehension

If pwd displays /Users/backup, and -r tells ls to display things in reverse order, what command will display:

pnas-sub/ pnas-final/ original/


	ls pwd

	ls -r -F

	ls -r -F /Users/backup

	Either #2 or #3 above, but not #1.






Default cd action

What does the command cd without a directory name do?


	It has no effect.

	It changes the working directory to /.

	It changes the working directory to the user's home directory.

	It produces an error message.






Exploring more ls arguments

What does the command ls do when used with the -s and -h arguments?









Creating Things


Learning Objectives


	Create a directory hierarchy that matches a given diagram.

	Create files in that hierarchy using an editor or by copying and renaming existing files.

	Display the contents of a directory using the command line.

	Delete specified files and/or directories.





We now know how to explore files and directories, but how do we create them in the first place? Let's go back to Nelle's home directory, /Users/nelle, and use ls -F to see what it contains:

$ pwd


/Users/nelle

$ ls -F


creatures/  molecules/           pizza.cfg
data/       north-pacific-gyre/  solar.pdf
Desktop/    notes.txt            writing/

Let's create a new directory called thesis using the command mkdir thesis (which has no output):

$ mkdir thesis


As you might (or might not) guess from its name, mkdir means "make directory". Since thesis is a relative path (i.e., doesn't have a leading slash), the new directory is created in the current working directory:

$ ls -F


creatures/  north-pacific-gyre/  thesis/
data/       notes.txt            writing/
Desktop/    pizza.cfg
molecules/  solar.pdf

However, there's nothing in it yet:

$ ls -F thesis


Let's change our working directory to thesis using cd, then run a text editor called Nano to create a file called draft.txt:

$ cd thesis
$ nano draft.txt



Which Editor?

When we say, "nano is a text editor," we really do mean "text": it can only work with plain character data, not tables, images, or any other human-friendly media. We use it in examples because almost anyone can drive it anywhere without training, but please use something more powerful for real work. On Unix systems (such as Linux and Mac OS X), many programmers use Emacs or Vim (both of which are completely unintuitive, even by Unix standards), or a graphical editor such as Gedit. On Windows, you may wish to use Notepad++.

No matter what editor you use, you will need to know where it searches for and saves files. If you start it from the shell, it will (probably) use your current working directory as its default location. If you use your computer's start menu, it may want to save files in your desktop or documents directory instead. You can change this by navigating to another directory the first time you "Save As..."



Let's type in a few lines of text, then use Control-O to write our data to disk:


[image: Nano in action]
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Once our file is saved, we can use Control-X to quit the editor and return to the shell. (Unix documentation often uses the shorthand ^A to mean "control-A".) nano doesn't leave any output on the screen after it exits, but ls now shows that we have created a file called draft.txt:

$ ls


draft.txt

Let's tidy up by running rm draft.txt:

$ rm draft.txt


This command removes files ("rm" is short for "remove"). If we run ls again, its output is empty once more, which tells us that our file is gone:

$ ls



Deleting Is Forever

The Unix shell doesn't have a trash bin that we can recover deleted files from (though most graphical interfaces to Unix do). Instead, when we delete files, they are unhooked from the file system so that their storage space on disk can be recycled. Tools for finding and recovering deleted files do exist, but there's no guarantee they'll work in any particular situation, since the computer may recycle the file's disk space right away.



Let's re-create that file and then move up one directory to /Users/nelle using cd ..:

$ pwd


/Users/nelle/thesis

$ nano draft.txt
$ ls


draft.txt

$ cd ..


If we try to remove the entire thesis directory using rm thesis, we get an error message:

$ rm thesis


rm: cannot remove `thesis': Is a directory

This happens because rm only works on files, not directories. The right command is rmdir, which is short for "remove directory". It doesn't work yet either, though, because the directory we're trying to remove isn't empty:

$ rmdir thesis


rmdir: failed to remove `thesis': Directory not empty

This little safety feature can save you a lot of grief, particularly if you are a bad typist. To really get rid of thesis we must first delete the file draft.txt:

$ rm thesis/draft.txt


The directory is now empty, so rmdir can delete it:

$ rmdir thesis



With Great Power Comes Great Responsibility

Removing the files in a directory just so that we can remove the directory quickly becomes tedious. Instead, we can use rm with the -r flag (which stands for "recursive"):

$ rm -r thesis

This removes everything in the directory, then the directory itself. If the directory contains sub-directories, rm -r does the same thing to them, and so on. It's very handy, but can do a lot of damage if used without care.



Let's create that directory and file one more time. (Note that this time we're running nano with the path thesis/draft.txt, rather than going into the thesis directory and running nano on draft.txt there.)

$ pwd


/Users/nelle

$ mkdir thesis


$ nano thesis/draft.txt
$ ls thesis


draft.txt

draft.txt isn't a particularly informative name, so let's change the file's name using mv, which is short for "move":

$ mv thesis/draft.txt thesis/quotes.txt


The first parameter tells mv what we're "moving", while the second is where it's to go. In this case, we're moving thesis/draft.txt to thesis/quotes.txt, which has the same effect as renaming the file. Sure enough, ls shows us that thesis now contains one file called quotes.txt:

$ ls thesis


quotes.txt

Just for the sake of inconsistency, mv also works on directories --- there is no separate mvdir command.

Let's move quotes.txt into the current working directory. We use mv once again, but this time we'll just use the name of a directory as the second parameter to tell mv that we want to keep the filename, but put the file somewhere new. (This is why the command is called "move".) In this case, the directory name we use is the special directory name . that we mentioned earlier.

$ mv thesis/quotes.txt .


The effect is to move the file from the directory it was in to the current working directory. ls now shows us that thesis is empty:

$ ls thesis


Further, ls with a filename or directory name as a parameter only lists that file or directory. We can use this to see that quotes.txt is still in our current directory:

$ ls quotes.txt


quotes.txt

The cp command works very much like mv, except it copies a file instead of moving it. We can check that it did the right thing using ls with two paths as parameters --- like most Unix commands, ls can be given thousands of paths at once:

$ cp quotes.txt thesis/quotations.txt
$ ls quotes.txt thesis/quotations.txt


quotes.txt   thesis/quotations.txt

To prove that we made a copy, let's delete the quotes.txt file in the current directory and then run that same ls again.

$ rm quotes.txt
$ ls quotes.txt thesis/quotations.txt


ls: cannot access quotes.txt: No such file or directory
thesis/quotations.txt

This time it tells us that it can't find quotes.txt in the current directory, but it does find the copy in thesis that we didn't delete.


Another Useful Abbreviation

The shell interprets the character ~ (tilde) at the start of a path to mean "the current user's home directory". For example, if Nelle's home directory is /Users/nelle, then ~/data is equivalent to /Users/nelle/data. This only works if it is the first character in the path: here/there/~/elsewhere is not /Users/nelle/elsewhere.




Renaming files

Suppose that you created a .txt file in your current directory to contain a list of the statistical tests you will need to do to analyze your data, and named it: statstics.txt

After creating and saving this file you realize you misspelled the filename! You want to correct the mistake, which of the following commands could you use to do so?


	cp statstics.txt statistics.txt

	mv statstics.txt statistics.txt

	mv statstics.txt .

	cp statstics.txt .






Moving and Copying

What is the output of the closing ls command in the sequence shown below?

$ pwd
/Users/jamie/data
$ ls
proteins.dat
$ mkdir recombine
$ mv proteins.dat recombine
$ cp recombine/proteins.dat ../proteins-saved.dat
$ ls


	proteins-saved.dat recombine

	recombine

	proteins.dat recombine

	proteins-saved.dat






Organizing Directories and Files

Jamie is working on a project and she sees that her files aren't very well organized:

$ ls -F
analyzed/  fructose.dat    raw/   sucrose.dat

The fructose.dat and sucrose.dat files contain output from her data analysis. What command(s) covered in this lesson does she need to run so that the commands below will produce the output shown?

$ ls -F
analyzed/   raw/
$ ls analyzed
fructose.dat    sucrose.dat




Copy with Multiple Filenames

What does cp do when given several filenames and a directory name, as in:

$ mkdir backup
$ cp thesis/citations.txt thesis/quotations.txt backup

What does cp do when given three or more filenames, as in:

$ ls -F
intro.txt    methods.txt    survey.txt
$ cp intro.txt methods.txt survey.txt




Listing Recursively and By Time

The command ls -R lists the contents of directories recursively, i.e., lists their sub-directories, sub-sub-directories, and so on in alphabetical order at each level. The command ls -t lists things by time of last change, with most recently changed files or directories first. In what order does ls -R -t display things?







Pipes and Filters


Learning Objectives


	Redirect a command's output to a file.

	Process a file instead of keyboard input using redirection.

	Construct command pipelines with two or more stages.

	Explain what usually happens if a program or pipeline isn't given any input to process.

	Explain Unix's "small pieces, loosely joined" philosophy.





Now that we know a few basic commands, we can finally look at the shell's most powerful feature: the ease with which it lets us combine existing programs in new ways. We'll start with a directory called molecules that contains six files describing some simple organic molecules. The .pdb extension indicates that these files are in Protein Data Bank format, a simple text format that specifies the type and position of each atom in the molecule.

$ ls molecules


cubane.pdb    ethane.pdb    methane.pdb
octane.pdb    pentane.pdb   propane.pdb

Let's go into that directory with cd and run the command wc *.pdb. wc is the "word count" command: it counts the number of lines, words, and characters in files. The * in *.pdb matches zero or more characters, so the shell turns *.pdb into a complete list of .pdb files:

$ cd molecules
$ wc *.pdb


  20  156 1158 cubane.pdb
  12   84  622 ethane.pdb
   9   57  422 methane.pdb
  30  246 1828 octane.pdb
  21  165 1226 pentane.pdb
  15  111  825 propane.pdb
 107  819 6081 total


Wildcards

* is a wildcard. It matches zero or more characters, so *.pdb matches ethane.pdb, propane.pdb, and every file that ends with '.pdb'. On the other hand, p*.pdb only matches pentane.pdb and propane.pdb, because the 'p' at the front only matches filenames that begin with the letter 'p'.

? is also a wildcard, but it only matches a single character. This means that p?.pdb matches pi.pdb or p5.pdb, but not propane.pdb. We can use any number of wildcards at a time: for example, p*.p?* matches anything that starts with a 'p' and ends with '.', 'p', and at least one more character (since the '?' has to match one character, and the final '*' can match any number of characters). Thus, p*.p?* would match preferred.practice, and even p.pi (since the first '*' can match no characters at all), but not quality.practice (doesn't start with 'p') or preferred.p (there isn't at least one character after the '.p').

When the shell sees a wildcard, it expands the wildcard to create a list of matching filenames before running the command that was asked for. As an exception, if a wildcard expression does not match any file, Bash will pass the expression as a parameter to the command as it is. For example typing ls *.pdf in the molecules directory (which contains only files with names ending with .pdb) results in an error message that there is no file called *.pdf. However, generally commands like wc and ls see the lists of file names matching these expressions, but not the wildcards themselves. It is the shell, not the other programs, that deals with expanding wildcards, and this another example of orthogonal design.



If we run wc -l instead of just wc, the output shows only the number of lines per file:

$ wc -l *.pdb


  20  cubane.pdb
  12  ethane.pdb
   9  methane.pdb
  30  octane.pdb
  21  pentane.pdb
  15  propane.pdb
 107  total

We can also use -w to get only the number of words, or -c to get only the number of characters.

Which of these files is shortest? It's an easy question to answer when there are only six files, but what if there were 6000? Our first step toward a solution is to run the command:

$ wc -l *.pdb > lengths.txt


The greater than symbol, >, tells the shell to redirect the command's output to a file instead of printing it to the screen. The shell will create the file if it doesn't exist, or overwrite the contents of that file if it does. (This is why there is no screen output: everything that wc would have printed has gone into the file lengths.txt instead.) ls lengths.txt confirms that the file exists:

$ ls lengths.txt


lengths.txt

We can now send the content of lengths.txt to the screen using cat lengths.txt. cat stands for "concatenate": it prints the contents of files one after another. There's only one file in this case, so cat just shows us what it contains:

$ cat lengths.txt


  20  cubane.pdb
  12  ethane.pdb
   9  methane.pdb
  30  octane.pdb
  21  pentane.pdb
  15  propane.pdb
 107  total

Now let's use the sort command to sort its contents. We will also use the -n flag to specify that the sort is numerical instead of alphabetical. This does not change the file; instead, it sends the sorted result to the screen:

$ sort -n lengths.txt


  9  methane.pdb
 12  ethane.pdb
 15  propane.pdb
 20  cubane.pdb
 21  pentane.pdb
 30  octane.pdb
107  total

We can put the sorted list of lines in another temporary file called sorted-lengths.txt by putting > sorted-lengths.txt after the command, just as we used > lengths.txt to put the output of wc into lengths.txt. Once we've done that, we can run another command called head to get the first few lines in sorted-lengths.txt:

$ sort -n lengths.txt > sorted-lengths.txt
$ head -1 sorted-lengths.txt


  9  methane.pdb

Using the parameter -1 with head tells it that we only want the first line of the file; -20 would get the first 20, and so on. Since sorted-lengths.txt contains the lengths of our files ordered from least to greatest, the output of head must be the file with the fewest lines.

If you think this is confusing, you're in good company: even once you understand what wc, sort, and head do, all those intermediate files make it hard to follow what's going on. We can make it easier to understand by running sort and head together:

$ sort -n lengths.txt | head -1


  9  methane.pdb

The vertical bar between the two commands is called a pipe. It tells the shell that we want to use the output of the command on the left as the input to the command on the right. The computer might create a temporary file if it needs to, or copy data from one program to the other in memory, or something else entirely; we don't have to know or care.

We can use another pipe to send the output of wc directly to sort, which then sends its output to head:

$ wc -l *.pdb | sort -n | head -1


  9  methane.pdb

This is exactly like a mathematician nesting functions like log(3x) and saying "the log of three times x". In our case, the calculation is "head of sort of line count of *.pdb".

Here's what actually happens behind the scenes when we create a pipe. When a computer runs a program --- any program --- it creates a process in memory to hold the program's software and its current state. Every process has an input channel called standard input. (By this point, you may be surprised that the name is so memorable, but don't worry: most Unix programmers call it "stdin". Every process also has a default output channel called standard output (or "stdout").

The shell is actually just another program. Under normal circumstances, whatever we type on the keyboard is sent to the shell on its standard input, and whatever it produces on standard output is displayed on our screen. When we tell the shell to run a program, it creates a new process and temporarily sends whatever we type on our keyboard to that process's standard input, and whatever the process sends to standard output to the screen.

Here's what happens when we run wc -l *.pdb > lengths.txt. The shell starts by telling the computer to create a new process to run the wc program. Since we've provided some filenames as parameters, wc reads from them instead of from standard input. And since we've used > to redirect output to a file, the shell connects the process's standard output to that file.

If we run wc -l *.pdb | sort -n instead, the shell creates two processes (one for each process in the pipe) so that wc and sort run simultaneously. The standard output of wc is fed directly to the standard input of sort; since there's no redirection with >, sort's output goes to the screen. And if we run wc -l *.pdb | sort -n | head -1, we get three processes with data flowing from the files, through wc to sort, and from sort through head to the screen.


[image: Redirects and Pipes]
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This simple idea is why Unix has been so successful. Instead of creating enormous programs that try to do many different things, Unix programmers focus on creating lots of simple tools that each do one job well, and that work well with each other. This programming model is called "pipes and filters". We've already seen pipes; a filter is a program like wc or sort that transforms a stream of input into a stream of output. Almost all of the standard Unix tools can work this way: unless told to do otherwise, they read from standard input, do something with what they've read, and write to standard output.

The key is that any program that reads lines of text from standard input and writes lines of text to standard output can be combined with every other program that behaves this way as well. You can and should write your programs this way so that you and other people can put those programs into pipes to multiply their power.


Redirecting Input

As well as using > to redirect a program's output, we can use < to redirect its input, i.e., to read from a file instead of from standard input. For example, instead of writing wc ammonia.pdb, we could write wc < ammonia.pdb. In the first case, wc gets a command line parameter telling it what file to open. In the second, wc doesn't have any command line parameters, so it reads from standard input, but we have told the shell to send the contents of ammonia.pdb to wc's standard input.




Nelle's Pipeline: Checking Files

Nelle has run her samples through the assay machines and created 1520 files in the north-pacific-gyre/2012-07-03 directory described earlier. As a quick sanity check, starting from her home directory, Nelle types:

$ cd north-pacific-gyre/2012-07-03
$ wc -l *.txt


The output is 1520 lines that look like this:

300 NENE01729A.txt
300 NENE01729B.txt
300 NENE01736A.txt
300 NENE01751A.txt
300 NENE01751B.txt
300 NENE01812A.txt
... ...

Now she types this:

$ wc -l *.txt | sort -n | head -5


 240 NENE02018B.txt
 300 NENE01729A.txt
 300 NENE01729B.txt
 300 NENE01736A.txt
 300 NENE01751A.txt

Whoops: one of the files is 60 lines shorter than the others. When she goes back and checks it, she sees that she did that assay at 8:00 on a Monday morning --- someone was probably in using the machine on the weekend, and she forgot to reset it. Before re-running that sample, she checks to see if any files have too much data:

$ wc -l *.txt | sort -n | tail -5


 300 NENE02040A.txt
 300 NENE02040B.txt
 300 NENE02040Z.txt
 300 NENE02043A.txt
 300 NENE02043B.txt

Those numbers look good --- but what's that 'Z' doing there in the third-to-last line? All of her samples should be marked 'A' or 'B'; by convention, her lab uses 'Z' to indicate samples with missing information. To find others like it, she does this:

$ ls *Z.txt


NENE01971Z.txt    NENE02040Z.txt

Sure enough, when she checks the log on her laptop, there's no depth recorded for either of those samples. Since it's too late to get the information any other way, she must exclude those two files from her analysis. She could just delete them using rm, but there are actually some analyses she might do later where depth doesn't matter, so instead, she'll just be careful later on to select files using the wildcard expression *[AB].txt. As always, the '*' matches any number of characters; the expression [AB] matches either an 'A' or a 'B', so this matches all the valid data files she has.


What does sort -n do?

If we run sort on this file:

10
2
19
22
6

the output is:

10
19
2
22
6

If we run sort -n on the same input, we get this instead:

2
6
10
19
22

Explain why -n has this effect.




What does < mean?

What is the difference between:

wc -l < mydata.dat

and:

wc -l mydata.dat




What does >> mean?

What is the difference between:

echo hello > testfile01.txt

and:

echo hello >> testfile02.txt

Hint: Try executing each command twice in a row and then examining the output files.




Piping commands together

In our current directory, we want to find the 3 files which have the least number of lines. Which command listed below would work?


	wc -l * > sort -n > head -3

	wc -l * | sort -n | head 1-3

	wc -l * | head -3 | sort -n

	wc -l * | sort -n | head -3






Why does uniq only remove adjacent duplicates?

The command uniq removes adjacent duplicated lines from its input. For example, if a file salmon.txt contains:

coho
coho
steelhead
coho
steelhead
steelhead

then uniq salmon.txt produces:

coho
steelhead
coho
steelhead

Why do you think uniq only removes adjacent duplicated lines? (Hint: think about very large data sets.) What other command could you combine with it in a pipe to remove all duplicated lines?




Pipe reading comprehension

A file called animals.txt contains the following data:

2012-11-05,deer
2012-11-05,rabbit
2012-11-05,raccoon
2012-11-06,rabbit
2012-11-06,deer
2012-11-06,fox
2012-11-07,rabbit
2012-11-07,bear

What text passes through each of the pipes and the final redirect in the pipeline below?

cat animals.txt | head -5 | tail -3 | sort -r > final.txt




Pipe construction

The command:

$ cut -d , -f 2 animals.txt

produces the following output:

deer
rabbit
raccoon
rabbit
deer
fox
rabbit
bear

What other command(s) could be added to this in a pipeline to find out what animals the file contains (without any duplicates in their names)?









Loops


Learning Objectives


	Write a loop that applies one or more commands separately to each file in a set of files.

	Trace the values taken on by a loop variable during execution of the loop.

	Explain the difference between a variable's name and its value.

	Explain why spaces and some punctuation characters shouldn't be used in file names.

	Demonstrate how to see what commands have recently been executed.

	Re-run recently executed commands without retyping them.





Wildcards and tab completion are two ways to reduce typing (and typing mistakes). Another is to tell the shell to do something over and over again. Suppose we have several hundred genome data files named basilisk.dat, unicorn.dat, and so on. In this example, we'll use the creatures directory which only has two example files, but the principles can be applied to many many more files at once. We would like to modify these files, but also save a version of the original files and rename them as original-basilisk.dat and original-unicorn.dat. We can't use:

$ mv *.dat original-*.dat


because that would expand to:

$ mv basilisk.dat unicorn.dat original-*.dat


This wouldn't back up our files, instead we get an error:

mv: target `original-*.dat' is not a directory

This a problem arises when mv receives more than two inputs. When this happens, it expects the last input to be a directory where it can move all the files it was passed. Since there is no directory named original-*.dat in the creatures directory we get an error.

Instead, we can use a loop to do some operation once for each thing in a list. Here's a simple example that displays the first three lines of each file in turn:

$ for filename in basilisk.dat unicorn.dat
> do
>    head -3 $filename
> done


COMMON NAME: basilisk
CLASSIFICATION: basiliscus vulgaris
UPDATED: 1745-05-02
COMMON NAME: unicorn
CLASSIFICATION: equus monoceros
UPDATED: 1738-11-24

When the shell sees the keyword for, it knows it is supposed to repeat a command (or group of commands) once for each thing in a list. In this case, the list is the two filenames. Each time through the loop, the name of the thing currently being operated on is assigned to the variable called filename. Inside the loop, we get the variable's value by putting $ in front of it: $filename is basilisk.dat the first time through the loop, unicorn.dat the second, and so on.

By using the dollar sign we are telling the shell interpreter to treat filename as a variable name and substitute its value on its place, but not as some text or external command. When using variables it is also possible to put the names into curly braces to clearly delimit the variable name: $filename is equivalent to ${filename}, but is different from ${file}name. You may find this notation in other people's programs.

Finally, the command that's actually being run is our old friend head, so this loop prints out the first three lines of each data file in turn.


Follow the Prompt

The shell prompt changes from $ to > and back again as we were typing in our loop. The second prompt, >, is different to remind us that we haven't finished typing a complete command yet.



We have called the variable in this loop filename in order to make its purpose clearer to human readers. The shell itself doesn't care what the variable is called; if we wrote this loop as:

for x in basilisk.dat unicorn.dat
do
    head -3 $x
done


or:

for temperature in basilisk.dat unicorn.dat
do
    head -3 $temperature
done


it would work exactly the same way. Don't do this. Programs are only useful if people can understand them, so meaningless names (like x) or misleading names (like temperature) increase the odds that the program won't do what its readers think it does.

Here's a slightly more complicated loop:

for filename in *.dat
do
    echo $filename
    head -100 $filename | tail -20
done


The shell starts by expanding *.dat to create the list of files it will process. The loop body then executes two commands for each of those files. The first, echo, just prints its command-line parameters to standard output. For example:

$ echo hello there


prints:

hello there

In this case, since the shell expands $filename to be the name of a file, echo $filename just prints the name of the file. Note that we can't write this as:

for filename in *.dat
do
    $filename
    head -100 $filename | tail -20
done


because then the first time through the loop, when $filename expanded to basilisk.dat, the shell would try to run basilisk.dat as a program. Finally, the head and tail combination selects lines 81-100 from whatever file is being processed.


Spaces in Names

Filename expansion in loops is another reason you should not use spaces in filenames. Suppose our data files are named:

basilisk.dat
red dragon.dat
unicorn.dat

If we try to process them using:

for filename in *.dat
do
    head -100 $filename | tail -20
done

then the shell will expand *.dat to create:

basilisk.dat red dragon.dat unicorn.dat

With older versions of Bash, or most other shells, filename will then be assigned the following values in turn:

basilisk.dat
red
dragon.dat
unicorn.dat

That's a problem: head can't read files called red and dragon.dat because they don't exist, and won't be asked to read the file red dragon.dat.

We can make our script a little bit more robust by quoting our use of the variable:

for filename in *.dat
do
    head -100 "$filename" | tail -20
done

but it's simpler just to avoid using spaces (or other special characters) in filenames.



Going back to our original file renaming problem, we can solve it using this loop:

for filename in *.dat
do
    mv $filename original-$filename
done


This loop runs the mv command once for each filename. The first time, when $filename expands to basilisk.dat, the shell executes:

mv basilisk.dat original-basilisk.dat


The second time, the command is:

mv unicorn.dat original-unicorn.dat



Measure Twice, Run Once

A loop is a way to do many things at once --- or to make many mistakes at once if it does the wrong thing. One way to check what a loop would do is to echo the commands it would run instead of actually running them. For example, we could write our file renaming loop like this:

for filename in *.dat
do
    echo mv $filename original-$filename
done

Instead of running mv, this loop runs echo, which prints out:

mv basilisk.dat original-basilisk.dat
mv unicorn.dat original-unicorn.dat

without actually running those commands. We can then use up-arrow to redisplay the loop, back-arrow to get to the word echo, delete it, and then press "enter" to run the loop with the actual mv commands. This isn't foolproof, but it's a handy way to see what's going to happen when you're still learning how loops work.




Nelle's Pipeline: Processing Files

Nelle is now ready to process her data files. Since she's still learning how to use the shell, she decides to build up the required commands in stages. Her first step is to make sure that she can select the right files --- remember, these are ones whose names end in 'A' or 'B', rather than 'Z'. Starting from her home directory, Nelle types:

$ cd north-pacific-gyre/2012-07-03
$ for datafile in *[AB].txt
> do
>     echo $datafile
> done


NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...
NENE02043A.txt
NENE02043B.txt

Her next step is to decide what to call the files that the goostats analysis program will create. Prefixing each input file's name with "stats" seems simple, so she modifies her loop to do that:

$ for datafile in *[AB].txt
> do
>     echo $datafile stats-$datafile
> done


NENE01729A.txt stats-NENE01729A.txt
NENE01729B.txt stats-NENE01729B.txt
NENE01736A.txt stats-NENE01736A.txt
...
NENE02043A.txt stats-NENE02043A.txt
NENE02043B.txt stats-NENE02043B.txt

She hasn't actually run goostats yet, but now she's sure she can select the right files and generate the right output filenames.

Typing in commands over and over again is becoming tedious, though, and Nelle is worried about making mistakes, so instead of re-entering her loop, she presses the up arrow. In response, the shell redisplays the whole loop on one line (using semi-colons to separate the pieces):

$ for datafile in *[AB].txt; do echo $datafile stats-$datafile; done


Using the left arrow key, Nelle backs up and changes the command echo to goostats:

$ for datafile in *[AB].txt; do bash goostats $datafile stats-$datafile; done


When she presses enter, the shell runs the modified command. However, nothing appears to happen --- there is no output. After a moment, Nelle realizes that since her script doesn't print anything to the screen any longer, she has no idea whether it is running, much less how quickly. She kills the job by typing Control-C, uses up-arrow to repeat the command, and edits it to read:

$ for datafile in *[AB].txt; do echo $datafile; bash goostats $datafile stats-$datafile; done



Beginning and End

We can move to the beginning of a line in the shell by typing ^A (which means Control-A) and to the end using ^E.



When she runs her program now, it produces one line of output every five seconds or so:

NENE01729A.txt
NENE01729B.txt
NENE01736A.txt
...

1518 times 5 seconds, divided by 60, tells her that her script will take about two hours to run. As a final check, she opens another terminal window, goes into north-pacific-gyre/2012-07-03, and uses cat stats-NENE01729B.txt to examine one of the output files. It looks good, so she decides to get some coffee and catch up on her reading.


Those Who Know History Can Choose to Repeat It

Another way to repeat previous work is to use the history command to get a list of the last few hundred commands that have been executed, and then to use !123 (where "123" is replaced by the command number) to repeat one of those commands. For example, if Nelle types this:

$ history | tail -5
  456  ls -l NENE0*.txt
  457  rm stats-NENE01729B.txt.txt
  458  bash goostats NENE01729B.txt stats-NENE01729B.txt
  459  ls -l NENE0*.txt
  460  history

then she can re-run goostats on NENE01729B.txt simply by typing !458.




Variables in Loops

Suppose that ls initially displays:

fructose.dat    glucose.dat   sucrose.dat

What is the output of:

for datafile in *.dat
do
    ls *.dat
done

Now, what is the output of:

for datafile in *.dat
do
  ls $datafile
done

Why do these two loops give you different outputs?




Saving to a File in a Loop - Part One

In the same directory, what is the effect of this loop?

for sugar in *.dat
do
    echo $sugar
    cat $sugar > xylose.dat
done


	Prints fructose.dat, glucose.dat, and sucrose.dat, and the text from sucrose.dat will be saved to a file called xylose.dat.

	Prints fructose.dat, glucose.dat, and sucrose.dat, and the text from all three files would be concatenated and saved to a file called xylose.dat.

	Prints fructose.dat, glucose.dat, sucrose.dat, and xylose.dat, and the text from sucrose.dat will be saved to a file called xylose.dat.

	None of the above.






Saving to a File in a Loop - Part Two

In another directory, where ls returns:

fructose.dat    glucose.dat   sucrose.dat   maltose.txt

What would be the output of the following loop?

for datafile in *.dat
do
    cat $datafile >> sugar.dat
done


	All of the text from fructose.dat, glucose.dat and sucrose.dat would be concatenated and saved to a file called sugar.dat.

	The text from sucrose.dat will be saved to a file called sugar.dat.

	All of the text from fructose.dat, glucose.dat, sucrose.dat and maltose.txt would be concatenated and saved to a file called sugar.dat.

	All of the text from fructose.dat, glucose.dat and sucrose.dat would be printed to the screen and saved to a file called sugar.dat






Doing a Dry Run

Suppose we want to preview the commands the following loop will execute without actually running those commands:

for file in *.dat
do
  analyze $file > analyzed-$file
done


What is the difference between the the two loops below, and which one would we want to run?

# Version 1
for file in *.dat
do
  echo analyze $file > analyzed-$file
done


# Version 2
for file in *.dat
do
  echo "analyze $file > analyzed-$file"
done





Nested Loops and Command-Line Expressions

The expr does simple arithmetic using command-line parameters:

$ expr 3 + 5
8
$ expr 30 / 5 - 2
4

Given this, what is the output of:

for left in 2 3
do
    for right in $left
    do
        expr $left + $right
    done
done









Shell Scripts


Learning Objectives


	Write a shell script that runs a command or series of commands for a fixed set of files.

	Run a shell script from the command line.

	Write a shell script that operates on a set of files defined by the user on the command line.

	Create pipelines that include user-written shell scripts.





We are finally ready to see what makes the shell such a powerful programming environment. We are going to take the commands we repeat frequently and save them in files so that we can re-run all those operations again later by typing a single command. For historical reasons, a bunch of commands saved in a file is usually called a shell script, but make no mistake: these are actually small programs.

Let's start by going back to molecules/ and putting the following line in the file middle.sh:

$ cd molecules
$ cat middle.sh


head -15 octane.pdb | tail -5

This is a variation on the pipe we constructed earlier: it selects lines 11-15 of the file octane.pdb. Remember, we are not running it as a command just yet: we are putting the commands in a file.

Once we have saved the file, we can ask the shell to execute the commands it contains. Our shell is called bash, so we run the following command:

$ bash middle.sh


ATOM      9  H           1      -4.502   0.681   0.785  1.00  0.00
ATOM     10  H           1      -5.254  -0.243  -0.537  1.00  0.00
ATOM     11  H           1      -4.357   1.252  -0.895  1.00  0.00
ATOM     12  H           1      -3.009  -0.741  -1.467  1.00  0.00
ATOM     13  H           1      -3.172  -1.337   0.206  1.00  0.00

Sure enough, our script's output is exactly what we would get if we ran that pipeline directly.


Text vs. Whatever

We usually call programs like Microsoft Word or LibreOffice Writer "text editors", but we need to be a bit more careful when it comes to programming. By default, Microsoft Word uses .docx files to store not only text, but also formatting information about fonts, headings, and so on. This extra information isn't stored as characters, and doesn't mean anything to tools like head: they expect input files to contain nothing but the letters, digits, and punctuation on a standard computer keyboard. When editing programs, therefore, you must either use a plain text editor, or be careful to save files as plain text.



What if we want to select lines from an arbitrary file? We could edit middle.sh each time to change the filename, but that would probably take longer than just retyping the command. Instead, let's edit middle.sh and replace octane.pdb with a special variable called $1:

$ cat middle.sh


head -15 "$1" | tail -5

Inside a shell script, $1 means "the first filename (or other parameter) on the command line". We can now run our script like this:

$ bash middle.sh octane.pdb


ATOM      9  H           1      -4.502   0.681   0.785  1.00  0.00
ATOM     10  H           1      -5.254  -0.243  -0.537  1.00  0.00
ATOM     11  H           1      -4.357   1.252  -0.895  1.00  0.00
ATOM     12  H           1      -3.009  -0.741  -1.467  1.00  0.00
ATOM     13  H           1      -3.172  -1.337   0.206  1.00  0.00

or on a different file like this:

$ bash middle.sh pentane.pdb


ATOM      9  H           1       1.324   0.350  -1.332  1.00  0.00
ATOM     10  H           1       1.271   1.378   0.122  1.00  0.00
ATOM     11  H           1      -0.074  -0.384   1.288  1.00  0.00
ATOM     12  H           1      -0.048  -1.362  -0.205  1.00  0.00
ATOM     13  H           1      -1.183   0.500  -1.412  1.00  0.00


Double-Quotes Around Arguments

We put the $1 inside of double-quotes in case the filename happens to contain any spaces. The shell uses whitespace to separate arguments, so we have to be careful when using arguments that might have whitespace in them. If we left out these quotes, and $1 expanded to a filename like methyl butane.pdb, the command in the script would effectively be:

head -15 methyl butane.pdb | tail -5

This would call head on two separate files, methyl and butane.pdb, which is probably not what we intended.



We still need to edit middle.sh each time we want to adjust the range of lines, though. Let's fix that by using the special variables $2 and $3:

$ cat middle.sh


head "$2" "$1" | tail "$3"

$ bash middle.sh pentane.pdb -20 -5


ATOM     14  H           1      -1.259   1.420   0.112  1.00  0.00
ATOM     15  H           1      -2.608  -0.407   1.130  1.00  0.00
ATOM     16  H           1      -2.540  -1.303  -0.404  1.00  0.00
ATOM     17  H           1      -3.393   0.254  -0.321  1.00  0.00
TER      18              1

This works, but it may take the next person who reads middle.sh a moment to figure out what it does. We can improve our script by adding some comments at the top:

$ cat middle.sh


# Select lines from the middle of a file.
# Usage: middle.sh filename -end_line -num_lines
head "$2" "$1" | tail "$3"

A comment starts with a # character and runs to the end of the line. The computer ignores comments, but they're invaluable for helping people understand and use scripts.

What if we want to process many files in a single pipeline? For example, if we want to sort our .pdb files by length, we would type:

$ wc -l *.pdb | sort -n


because wc -l lists the number of lines in the files (recall that wc stands for 'word count', adding the -l flag means 'count lines' instead) and sort -n sorts things numerically. We could put this in a file, but then it would only ever sort a list of .pdb files in the current directory. If we want to be able to get a sorted list of other kinds of files, we need a way to get all those names into the script. We can't use $1, $2, and so on because we don't know how many files there are. Instead, we use the special variable $@, which means, "All of the command-line parameters to the shell script." We also should put $@ inside double-quotes to handle the case of parameters containing spaces ("$@" is equivalent to "$1" "$2" ...) Here's an example:

$ cat sorted.sh


wc -l "$@" | sort -n

$ bash sorted.sh *.pdb ../creatures/*.dat


9 methane.pdb
12 ethane.pdb
15 propane.pdb
20 cubane.pdb
21 pentane.pdb
30 octane.pdb
163 ../creatures/basilisk.dat
163 ../creatures/unicorn.dat


Why Isn't It Doing Anything?

What happens if a script is supposed to process a bunch of files, but we don't give it any filenames? For example, what if we type:

$ bash sorted.sh

but don't say *.dat (or anything else)? In this case, $@ expands to nothing at all, so the pipeline inside the script is effectively:

wc -l | sort -n

Since it doesn't have any filenames, wc assumes it is supposed to process standard input, so it just sits there and waits for us to give it some data interactively. From the outside, though, all we see is it sitting there: the script doesn't appear to do anything.



We have two more things to do before we're finished with our simple shell scripts. If you look at a script like:

wc -l "$@" | sort -n

you can probably puzzle out what it does. On the other hand, if you look at this script:

# List files sorted by number of lines.
wc -l "$@" | sort -n

you don't have to puzzle it out --- the comment at the top tells you what it does. A line or two of documentation like this make it much easier for other people (including your future self) to re-use your work. The only caveat is that each time you modify the script, you should check that the comment is still accurate: an explanation that sends the reader in the wrong direction is worse than none at all.

Second, suppose we have just run a series of commands that did something useful --- for example, that created a graph we'd like to use in a paper. We'd like to be able to re-create the graph later if we need to, so we want to save the commands in a file. Instead of typing them in again (and potentially getting them wrong) we can do this:

$ history | tail -4 > redo-figure-3.sh


The file redo-figure-3.sh now contains:

297 bash goostats -r NENE01729B.txt stats-NENE01729B.txt
298 bash goodiff stats-NENE01729B.txt /data/validated/01729.txt > 01729-differences.txt
299 cut -d ',' -f 2-3 01729-differences.txt > 01729-time-series.txt
300 ygraph --format scatter --color bw --borders none 01729-time-series.txt figure-3.png

After a moment's work in an editor to remove the serial numbers on the commands, we have a completely accurate record of how we created that figure.


Unnumbering

Nelle could also use colrm (short for "column removal") to remove the serial numbers on her previous commands. Its parameters are the range of characters to strip from its input:

$ history | tail -5
  173  cd /tmp
  174  ls
  175  mkdir bakup
  176  mv bakup backup
  177  history | tail -5
$ history | tail -5 | colrm 1 7
cd /tmp
ls
mkdir bakup
mv bakup backup
history | tail -5
history | tail -5 | colrm 1 7



In practice, most people develop shell scripts by running commands at the shell prompt a few times to make sure they're doing the right thing, then saving them in a file for re-use. This style of work allows people to recycle what they discover about their data and their workflow with one call to history and a bit of editing to clean up the output and save it as a shell script.


Nelle's Pipeline: Creating a Script

An off-hand comment from her supervisor has made Nelle realize that she should have provided a couple of extra parameters to goostats when she processed her files. This might have been a disaster if she had done all the analysis by hand, but thanks to for loops, it will only take a couple of hours to re-do.

But experience has taught her that if something needs to be done twice, it will probably need to be done a third or fourth time as well. She runs the editor and writes the following:

# Calculate reduced stats for data files at J = 100 c/bp.
for datafile in "$@"
do
    echo $datafile
    bash goostats -J 100 -r $datafile stats-$datafile
done

(The parameters -J 100 and -r are the ones her supervisor said she should have used.) She saves this in a file called do-stats.sh so that she can now re-do the first stage of her analysis by typing:

$ bash do-stats.sh *[AB].txt


She can also do this:

$ bash do-stats.sh *[AB].txt | wc -l


so that the output is just the number of files processed rather than the names of the files that were processed.

One thing to note about Nelle's script is that it lets the person running it decide what files to process. She could have written it as:

# Calculate reduced stats for  A and Site B data files at J = 100 c/bp.
for datafile in *[AB].txt
do
    echo $datafile
    bash goostats -J 100 -r $datafile stats-$datafile
done

The advantage is that this always selects the right files: she doesn't have to remember to exclude the 'Z' files. The disadvantage is that it always selects just those files --- she can't run it on all files (including the 'Z' files), or on the 'G' or 'H' files her colleagues in Antarctica are producing, without editing the script. If she wanted to be more adventurous, she could modify her script to check for command-line parameters, and use *[AB].txt if none were provided. Of course, this introduces another tradeoff between flexibility and complexity.


Variables in shell scripts

In the molecules directory, you have a shell script called script.sh containing the following commands:

head $2 $1
tail $3 $1

While you are in the molecules directory, you type the following command:

bash script.sh '*.pdb' -1 -1

Which of the following outputs would you expect to see?


	All of the lines between the first and the last lines of each file ending in *.pdb in the molecules directory

	The first and the last line of each file ending in *.pdb in the molecules directory

	The first and the last line of each file in the molecules directory

	An error because of the quotes around *.pdb






List unique species

Leah has several hundred data files, each of which is formatted like this:

2013-11-05,deer,5
2013-11-05,rabbit,22
2013-11-05,raccoon,7
2013-11-06,rabbit,19
2013-11-06,deer,2
2013-11-06,fox,1
2013-11-07,rabbit,18
2013-11-07,bear,1

Write a shell script called species.sh that takes any number of filenames as command-line parameters, and uses cut, sort, and uniq to print a list of the unique species appearing in each of those files separately.




Find the longest file with a given extension

Write a shell script called longest.sh that takes the name of a directory and a filename extension as its parameters, and prints out the name of the file with the most lines in that directory with that extension. For example:

$ bash longest.sh /tmp/data pdb

would print the name of the .pdb file in /tmp/data that has the most lines.




Why record commands in the history before running them?

If you run the command:

history | tail -5 > recent.sh

the last command in the file is the history command itself, i.e., the shell has added history to the command log before actually running it. In fact, the shell always adds commands to the log before running them. Why do you think it does this?




Script reading comprehension

Joel's data directory contains three files: fructose.dat, glucose.dat, and sucrose.dat. Explain what a script called example.sh would do when run as bash example.sh *.dat if it contained the following lines:

# Script 1
echo *.*

# Script 2
for filename in $1 $2 $3
do
    cat $filename
done

# Script 3
echo $@.dat









Finding Things


Learning Objectives


	Use grep to select lines from text files that match simple patterns.

	Use find to find files whose names match simple patterns.

	Use the output of one command as the command-line parameters to another command.

	Explain what is meant by "text" and "binary" files, and why many common tools don't handle the latter well.





You can guess someone's age by how they talk about search: young people use "Google" as a verb, while crusty old Unix programmers use "grep". The word is a contraction of "global/regular expression/print", a common sequence of operations in early Unix text editors. It is also the name of a very useful command-line program.

grep finds and prints lines in files that match a pattern. For our examples, we will use a file that contains three haikus taken from a 1998 competition in Salon magazine. For this set of examples we're going to be working in the writing subdirectory:

$ cd
$ cd writing
$ cat haiku.txt


The Tao that is seen
Is not the true Tao, until
You bring fresh toner.

With searching comes loss
and the presence of absence:
"My Thesis" not found.

Yesterday it worked
Today it is not working
Software is like that.


Forever, or Five Years

We haven't linked to the original haikus because they don't appear to be on Salon's site any longer. As Jeff Rothenberg said, "Digital information lasts forever --- or five years, whichever comes first."



Let's find lines that contain the word "not":

$ grep not haiku.txt


Is not the true Tao, until
"My Thesis" not found
Today it is not working

Here, not is the pattern we're searching for. It's pretty simple: every alphanumeric character matches against itself. After the pattern comes the name or names of the files we're searching in. The output is the three lines in the file that contain the letters "not".

Let's try a different pattern: "day".

$ grep day haiku.txt


Yesterday it worked
Today it is not working

This time, two lines that include the letters "day" are outputted. However, these letters are contained within larger words. To restrict matches to lines containing the word "day" on its own, we can give grep with the -w flag. This will limit matches to word boundaries.

$ grep -w day haiku.txt


In this case, there aren't any, so grep's output is empty. Sometimes we don't want to search for a single word, but a phrase. This is also easy to do with grep by putting the phrase in quotes.

$ grep -w "is not" haiku.txt


Today it is not working

We've now seen that you don't have to have quotes around single words, but it is useful to use quotes when searching for multiple words. It also helps to make it easier to distinguish between the search term or phrase and the file being searched. We will use quotes in the remaining examples.

Another useful option is -n, which numbers the lines that match:

$ grep -n "it" haiku.txt


5:With searching comes loss
9:Yesterday it worked
10:Today it is not working

Here, we can see that lines 5, 9, and 10 contain the letters "it".

We can combine options (i.e. flags) as we do with other Unix commands. For example, let's find the lines that contain the word "the". We can combine the option -w to find the lines that contain the word "the" and -n to number the lines that match:

$ grep -n -w "the" haiku.txt


2:Is not the true Tao, until
6:and the presence of absence:

Now we want to use the option -i to make our search case-insensitive:

$ grep -n -w -i "the" haiku.txt


1:The Tao that is seen
2:Is not the true Tao, until
6:and the presence of absence:

Now, we want to use the option -v to invert our search, i.e., we want to output the lines that do not contain the word "the".

$ grep -n -w -v "the" haiku.txt


1:The Tao that is seen
3:You bring fresh toner.
4:
5:With searching comes loss
7:"My Thesis" not found.
8:
9:Yesterday it worked
10:Today it is not working
11:Software is like that.

grep has lots of other options. To find out what they are, we can type man grep. man is the Unix "manual" command: it prints a description of a command and its options, and (if you're lucky) provides a few examples of how to use it.

To navigate through the man pages, you may use the up and down arrow keys to move line-by-line, or try the "b" and spacebar keys to skip up and down by full page. Quit the man pages by typing "q".

$ man grep


GREP(1)                                                                                              GREP(1)

NAME
grep, egrep, fgrep - print lines matching a pattern

SYNOPSIS
grep [OPTIONS] PATTERN [FILE...]
grep [OPTIONS] [-e PATTERN | -f FILE] [FILE...]

DESCRIPTION
grep  searches the named input FILEs (or standard input if no files are named, or if a single hyphen-
minus (-) is given as file name) for lines containing a match to the given PATTERN.  By default, grep
prints the matching lines.
...        ...        ...

OPTIONS
Generic Program Information
--help Print  a  usage  message  briefly summarizing these command-line options and the bug-reporting
address, then exit.

-V, --version
Print the version number of grep to the standard output stream.  This version number should be
included in all bug reports (see below).

Matcher Selection
-E, --extended-regexp
Interpret  PATTERN  as  an  extended regular expression (ERE, see below).  (-E is specified by
POSIX.)

-F, --fixed-strings
Interpret PATTERN as a list of fixed strings, separated by newlines, any of  which  is  to  be
matched.  (-F is specified by POSIX.)
...        ...        ...


Wildcards

grep's real power doesn't come from its options, though; it comes from the fact that patterns can include wildcards. (The technical name for these is regular expressions, which is what the "re" in "grep" stands for.) Regular expressions are both complex and powerful; if you want to do complex searches, please look at the lesson on our website. As a taster, we can find lines that have an 'o' in the second position like this:

$ grep -E '^.o' haiku.txt
You bring fresh toner.
Today it is not working
Software is like that.

We use the -E flag and put the pattern in quotes to prevent the shell from trying to interpret it. (If the pattern contained a '*', for example, the shell would try to expand it before running grep.) The '^' in the pattern anchors the match to the start of the line. The '.' matches a single character (just like '?' in the shell), while the 'o' matches an actual 'o'.



While grep finds lines in files, the find command finds files themselves. Again, it has a lot of options; to show how the simplest ones work, we'll use the directory tree shown below.


[image: File Tree for Find Example]
File Tree for Find Example



Nelle's writing directory contains one file called haiku.txt and four subdirectories: thesis (which is sadly empty), data (which contains two files one.txt and two.txt), a tools directory that contains the programs format and stats, and an empty subdirectory called old.

For our first command, let's run find . -type d. As always, the . on its own means the current working directory, which is where we want our search to start; -type d means "things that are directories". Sure enough, find's output is the names of the five directories in our little tree (including .):

$ find . -type d


./
./data
./thesis
./tools
./tools/old

If we change -type d to -type f, we get a listing of all the files instead:

$ find . -type f


./haiku.txt
./tools/stats
./tools/old/oldtool
./tools/format
./thesis/empty-draft.md
./data/one.txt
./data/two.txt

find automatically goes into subdirectories, their subdirectories, and so on to find everything that matches the pattern we've given it. If we don't want it to, we can use -maxdepth to restrict the depth of search:

$ find . -maxdepth 1 -type f


./haiku.txt

The opposite of -maxdepth is -mindepth, which tells find to only report things that are at or below a certain depth. -mindepth 2 therefore finds all the files that are two or more levels below us:

$ find . -mindepth 2 -type f


./data/one.txt
./data/two.txt
./tools/format
./tools/stats

Now let's try matching by name:

$ find . -name *.txt


./haiku.txt

We expected it to find all the text files, but it only prints out ./haiku.txt. The problem is that the shell expands wildcard characters like * before commands run. Since *.txt in the current directory expands to haiku.txt, the command we actually ran was:

$ find . -name haiku.txt


find did what we asked; we just asked for the wrong thing.

To get what we want, let's do what we did with grep: put *.txt in single quotes to prevent the shell from expanding the * wildcard. This way, find actually gets the pattern *.txt, not the expanded filename haiku.txt:

$ find . -name '*.txt'


./data/one.txt
./data/two.txt
./haiku.txt


Listing vs. Finding

ls and find can be made to do similar things given the right options, but under normal circumstances, ls lists everything it can, while find searches for things with certain properties and shows them.



As we said earlier, the command line's power lies in combining tools. We've seen how to do that with pipes; let's look at another technique. As we just saw, find . -name '*.txt' gives us a list of all text files in or below the current directory. How can we combine that with wc -l to count the lines in all those files?

The simplest way is to put the find command inside $():

$ wc -l $(find . -name '*.txt')


11 ./haiku.txt
300 ./data/two.txt
70 ./data/one.txt
381 total

When the shell executes this command, the first thing it does is run whatever is inside the $(). It then replaces the $() expression with that command's output. Since the output of find is the three filenames ./data/one.txt, ./data/two.txt, and ./haiku.txt, the shell constructs the command:

$ wc -l ./data/one.txt ./data/two.txt ./haiku.txt


which is what we wanted. This expansion is exactly what the shell does when it expands wildcards like * and ?, but lets us use any command we want as our own "wildcard".

It's very common to use find and grep together. The first finds files that match a pattern; the second looks for lines inside those files that match another pattern. Here, for example, we can find PDB files that contain iron atoms by looking for the string "FE" in all the .pdb files above the current directory:

$ grep "FE" $(find .. -name '*.pdb')


../data/pdb/heme.pdb:ATOM     25 FE           1      -0.924   0.535  -0.518


Binary Files

We have focused exclusively on finding things in text files. What if your data is stored as images, in databases, or in some other format? One option would be to extend tools like grep to handle those formats. This hasn't happened, and probably won't, because there are too many formats to support.

The second option is to convert the data to text, or extract the text-ish bits from the data. This is probably the most common approach, since it only requires people to build one tool per data format (to extract information). On the one hand, it makes simple things easy to do. On the negative side, complex things are usually impossible. For example, it's easy enough to write a program that will extract X and Y dimensions from image files for grep to play with, but how would you write something to find values in a spreadsheet whose cells contained formulas?

The third choice is to recognize that the shell and text processing have their limits, and to use a programming language such as Python instead. When the time comes to do this, don't be too hard on the shell: many modern programming languages, Python included, have borrowed a lot of ideas from it, and imitation is also the sincerest form of praise.



The Unix shell is older than most of the people who use it. It has survived so long because it is one of the most productive programming environments ever created --- maybe even the most productive. Its syntax may be cryptic, but people who have mastered it can experiment with different commands interactively, then use what they have learned to automate their work. Graphical user interfaces may be better at the first, but the shell is still unbeaten at the second. And as Alfred North Whitehead wrote in 1911, "Civilization advances by extending the number of important operations which we can perform without thinking about them."


Using grep

The Tao that is seen
Is not the true Tao, until
You bring fresh toner.

With searching comes loss
and the presence of absence:
"My Thesis" not found.

Yesterday it worked
Today it is not working
Software is like that.

From the above text, contained in the file haiku.txt, which command would result in the following output:

and the presence of absence:


	grep "of" haiku.txt

	grep -E "of" haiku.txt

	grep -w "of" haiku.txt

	grep -i "of" haiku.txt






find pipeline reading comprehension

Write a short explanatory comment for the following shell script:

find . -name '*.dat' | wc -l | sort -n





Matching ose.dat but not temp

The -v flag to grep inverts pattern matching, so that only lines which do not match the pattern are printed. Given that, which of the following commands will find all files in /data whose names end in ose.dat (e.g., sucrose.dat or maltose.dat), but do not contain the word temp?


	find /data -name '*.dat' | grep ose | grep -v temp


	find /data -name ose.dat | grep -v temp


	grep -v "temp" $(find /data -name '*ose.dat')


	None of the above.




Little Women

You and your friend, having just finished reading Little Women by Louisa May Alcott, are in an argument. Of the four sisters in the book, Jo, Meg, Beth, and Amy, your friend thinks that Jo was the most mentioned. You, however, are certain it was Amy. Luckily, you have a file LittleWomen.txt containing the full text of the novel. Using afor loop, how would you tabulate the number of times each of the four sisters is mentioned? Hint: one solution might employ the commands grep and wc and a |, while another might utilize grep options.







Reference


Introducing the Shell


	A shell is a program whose primary purpose is to read commands and run other programs.

	The shell's main advantages are its high action-to-keystroke ratio, its support for automating repetitive tasks, and that it can be used to access networked machines.

	The shell's main disadvantages are its primarily textual nature and how cryptic its commands and operation can be.






Files and Directories


	The file system is responsible for managing information on the disk.

	Information is stored in files, which are stored in directories (folders).

	Directories can also store other directories, which forms a directory tree.

	cd path changes the current working directory.

	ls path prints a listing of a specific file or directory; ls on its own lists the current working directory.

	pwd prints the user's current working directory.

	whoami shows the user's current identity.

	/ on its own is the root directory of the whole file system.

	A relative path specifies a location starting from the current location.

	An absolute path specifies a location from the root of the file system.

	Directory names in a path are separated with '/' on Unix, but '\' on Windows.

	'..' means "the directory above the current one"; '.' on its own means "the current directory".

	Most files' names are something.extension. The extension isn't required, and doesn't guarantee anything, but is normally used to indicate the type of data in the file.

	Most commands take options (flags) which begin with a '-'.






Creating Things


	cp old new copies a file.

	mkdir path creates a new directory.

	mv old new moves (renames) a file or directory.

	rm path removes (deletes) a file.

	rmdir path removes (deletes) an empty directory.

	Unix documentation uses '^A' to mean "control-A".

	The shell does not have a trash bin: once something is deleted, it's really gone.

	Nano is a very simple text editor --- please use something else for real work.






Pipes and Filters


	cat displays the contents of its inputs.

	head displays the first few lines of its input.

	tail displays the last few lines of its input.

	sort sorts its inputs.

	wc counts lines, words, and characters in its inputs.

	command > file redirects a command's output to a file.

	first | second is a pipeline: the output of the first command is used as the input to the second.

	The best way to use the shell is to use pipes to combine simple single-purpose programs (filters).






Loops


	A for loop repeats commands once for every thing in a list.

	Every for loop needs a variable to refer to the current "thing".

	Use $name to expand a variable (i.e., get its value).

	Do not use spaces, quotes, or wildcard characters such as '*' or '?' in filenames, as it complicates variable expansion.

	Give files consistent names that are easy to match with wildcard patterns to make it easy to select them for looping.

	Use the up-arrow key to scroll up through previous commands to edit and repeat them.

	Use "control-r" to search through the previously entered commands.

	Use history to display recent commands, and !number to repeat a command by number.






Shell Scripts


	Save commands in files (usually called shell scripts) for re-use.

	bash filename runs the commands saved in a file.

	$* refers to all of a shell script's command-line parameters.

	$1, $2, etc., refer to specified command-line parameters.

	Place variables in quotes if the values might have spaces in them.

	Letting users decide what files to process is more flexible and more consistent with built-in Unix commands.






Finding Things


	find finds files with specific properties that match patterns.

	grep selects lines in files that match patterns.

	man command displays the manual page for a given command.

	* matches zero or more characters in a filename, so *.txt matches all files ending in .txt.

	? matches any single character in a filename, so ?.txt matches a.txt but not any.txt.

	$(command) inserts a command's output in place.

	man command displays the manual page for a given command.






Glossary


	absolute path

	A path that refers to a particular location in a file system. Absolute paths are usually written with respect to the file system's root directory, and begin with either "/" (on Unix) or "\" (on Microsoft Windows). See also: relative path.


	argument

	A value given to a function or program when it runs. The term is often used interchangeably (and inconsistently) with parameter.


	command shell

	See shell


	command-line interface

	An interface based on typing commands, usually at a REPL. See also: graphical user interface.


	comment

	A remark in a program that is intended to help human readers understand what is going on, but is ignored by the computer. Comments in Python, R, and the Unix shell start with a # character and run to the end of the line; comments in SQL start with --, and other languages have other conventions.


	current working directory

	The directory that relative paths are calculated from; equivalently, the place where files referenced by name only are searched for. Every process has a current working directory. The current working directory is usually referred to using the shorthand notation . (pronounced "dot").


	file system

	A set of files, directories, and I/O devices (such as keyboards and screens). A file system may be spread across many physical devices, or many file systems may be stored on a single physical device; the operating system manages access.


	filename extension

	The portion of a file's name that comes after the final "." character. By convention this identifies the file's type: .txt means "text file", .png means "Portable Network Graphics file", and so on. These conventions are not enforced by most operating systems: it is perfectly possible to name an MP3 sound file homepage.html. Since many applications use filename extensions to identify the MIME type of the file, misnaming files may cause those applications to fail.


	filter

	A program that transforms a stream of data. Many Unix command-line tools are written as filters: they read data from standard input, process it, and write the result to standard output.


	flag

	A terse way to specify an option or setting to a command-line program. By convention Unix applications use a dash followed by a single letter, such as -v, or two dashes followed by a word, such as --verbose, while DOS applications use a slash, such as /V. Depending on the application, a flag may be followed by a single argument, as in -o /tmp/output.txt.


	for loop

	A loop that is executed once for each value in some kind of set, list, or range. See also: while loop.


	graphical user interface

	A graphical user interface, usually controlled by using a mouse. See also: command-line interface.


	home directory

	The default directory associated with an account on a computer system. By convention, all of a user's files are stored in or below her home directory.


	loop

	A set of instructions to be executed multiple times. Consists of a loop body and (usually) a condition for exiting the loop. See also for loop and while loop.


	loop body

	The set of statements or commands that are repeated inside a for loop or while loop.


	MIME type

	MIME (Multi-Purpose Internet Mail Extensions) types describe different file types for exchange on the Internet, for example images, audio, and documents.


	operating system

	Software that manages interactions between users, hardware, and software processes. Common examples are Linux, OS X, and Windows.


	orthogonal

	To have meanings or behaviors that are independent of each other. If a set of concepts or tools are orthogonal, they can be combined in any way.


	parameter

	A variable named in the function's declaration that is used to hold a value passed into the call. The term is often used interchangeably (and inconsistently) with argument.


	parent directory

	The directory that "contains" the one in question. Every directory in a file system except the root directory has a parent. A directory's parent is usually referred to using the shorthand notation .. (pronounced "dot dot").


	path

	A description that specifies the location of a file or directory within a file system. See also: absolute path, relative path.


	pipe

	A connection from the output of one program to the input of another. When two or more programs are connected in this way, they are called a "pipeline".


	process

	A running instance of a program, containing code, variable values, open files and network connections, and so on. Processes are the "actors" that the operating system manages; it typically runs each process for a few milliseconds at a time to give the impression that they are executing simultaneously.


	prompt

	A character or characters display by a REPL to show that it is waiting for its next command.


	quoting

	(in the shell): Using quotation marks of various kinds to prevent the shell from interpreting special characters. For example, to pass the string *.txt to a program, it is usually necessary to write it as '*.txt' (with single quotes) so that the shell will not try to expand the * wildcard.


	read-evaluate-print loop

	(REPL): A command-line interface that reads a command from the user, executes it, prints the result, and waits for another command.


	redirect

	To send a command's output to a file rather than to the screen or another command, or equivalently to read a command's input from a file.


	regular expression

	A pattern that specifies a set of character strings. REs are most often used to find sequences of characters in strings.


	relative path

	A path that specifies the location of a file or directory with respect to the current working directory. Any path that does not begin with a separator character ("/" or "\") is a relative path. See also: absolute path.


	root directory

	The top-most directory in a file system. Its name is "/" on Unix (including Linux and Mac OS X) and "\" on Microsoft Windows.


	shell

	A command-line interface such as Bash (the Bourne-Again Shell) or the Microsoft Windows DOS shell that allows a user to interact with the operating system.


	shell script

	A set of shell commands stored in a file for re-use. A shell script is a program executed by the shell; the name "script" is used for historical reasons.


	standard input

	A process's default input stream. In interactive command-line applications, it is typically connected to the keyboard; in a pipe, it receives data from the standard output of the preceding process.


	standard output

	A process's default output stream. In interactive command-line applications, data sent to standard output is displayed on the screen; in a pipe, it is passed to the standard input of the next process.


	sub-directory

	A directory contained within another directory.


	tab completion

	A feature provided by many interactive systems in which pressing the Tab key triggers automatic completion of the current word or command.


	variable

	A name in a program that is associated with a value or a collection of values.


	while loop

	A loop that keeps executing as long as some condition is true. See also: for loop.


	wildcard

	A character used in pattern matching. In the Unix shell, the wildcard * matches zero or more characters, so that *.txt matches all files whose names end in .txt.










Discussion


Job Control Codes

The shell accepts a few special commands that allow users to interact with running processes or programs. You can enter each of these "control codes" by holding down the CTRL key and then pressing one of the control characters. In other tutorials, you may see the ^ character used to represent the CTRL key (e.g. ^c = CTRL+c).




	Control Code
	Description





	CTRL+c
	Interrupts and cancels a running program. This is useful if you want to cancel a command that is taking too long to execute.



	CTRL+d
	Indicates the end of a file or stream of characters that you are entering on the command line. For example, we saw earlier that the wc command counts lines, words, and characters in a file. If we just type wc and hit Enter without providing a file name, then wc will assume we want it to analyze all the stuff we type next. After typing our magnum opus directly into the shell prompt, we can then type CTRL+d to tell wc that we're done and we'd like to see the results of the word count.



	CTRL+z
	Suspends a process but does not terminate it. You can then use the command fg to restart the job in the foreground.





For new shell users, these control codes can all appear to have the same effect: they make things "go away." But it is helpful to understand the differences. In general, if something went wrong and you just want to get your shell prompt back, it is better to use CTRL+c.




Other Shells

Before Bash became popular in the end of nineties, scientists widely used (and some still use) another shell, C-shell, or Csh. Bash and Csh have similar feature sets, but their syntax rules are different and this makes them incompatible with each other. A few other shells have appeared since, including ksh, zsh, and a number of others; they are mostly compatible with Bash, and Bash is the default shell on most modern implementations of Unix (including most packages that provide Unix-like tools for Windows) but if you get strange errors in shell scripts written by colleagues, check to see which shell they were written for.







Instructor's Guide


	Why do we learn to use the shell?

	Allows users to automate repetitive tasks

	And capture small data manipulation steps that are normally not recorded to make research reproducible




	The Problem

	Running the same workflow on several samples can be unnecessarily labour intensive

	Manual manipulation of data files:

	is often not captured in documentation

	is hard to reproduce

	is hard to troubleshoot, review, or improve







	The Shell

	Workflows can be automated through the use of shell scripts

	Built-in commands allow for easy data manipulation (e.g. sort, grep, etc.)

	Every step can be captured in the shell script and allow reproducibility and easy troubleshooting







Overall

Many people have questioned whether we should still teach the shell. After all, anyone who wants to rename several thousand data files can easily do so interactively in the Python interpreter, and anyone who's doing serious data analysis is probably going to do most of their work inside the IPython Notebook or R Studio. So why teach the shell?

The first answer is, "Because so much else depends on it." Installing software, configuring your default editor, and controlling remote machines frequently assume a basic familiarity with the shell, and with related ideas like standard input and output. Many tools also use its terminology (for example, the %ls and %cd magic commands in IPython).

The second answer is, "Because it's an easy way to introduce some fundamental ideas about how to use computers." As we teach people how to use the Unix shell, we teach them that they should get the computer to repeat things (via tab completion, ! followed by a command number, and for loops) rather than repeating things themselves. We also teach them to take things they've discovered they do frequently and save them for later re-use (via shell scripts), to give things sensible names, and to write a little bit of documentation (like comment at the top of shell scripts) to make their future selves' lives better.

The third answer is, "Because it enables use of many domain-specific tools and compute resources researchers cannot access otherwise." Familiarity with the shell is very useful for remote accessing machines, using high-performance computing infrastructure, and running new specialist tools in many disciplines. We do not teach HPC or domain-specific skills here but lay the groundwork for further development of these skills. In particular, understanding the syntax of commands, flags, and help systems is useful for domain specific tools and understanding the file system (and how to navigate it) is useful for remote access.

Finally, and perhaps most importantly, teaching people the shell lets us teach them to think about programming in terms of function composition. In the case of the shell, this takes the form of pipelines rather than nested function calls, but the core idea of "small pieces, loosely joined" is the same.

All of this material can be covered in three hours as long as learners using Windows do not run into roadblocks such as:


	not being able to figure out where their home directory is (particularly if they're using Cygwin);

	not being able to run a plain text editor; and

	the shell refusing to run scripts that include DOS line endings.






Teaching Notes


	Time estimates:

	@gvwilson: 3 hours




	Super cool online resource! http://explainshell.com/ will dissect any shell command you type in and display help text for each piece.


	Resources for "splitting" your shell so that recent commands remain in view: http://blog.rgaiacs.com/2015/06/18/swc_shell.html


	How to use the materials in the shell-novice repository (or, lesson planning)

	For a great general list of tips, see this swcarpentry blog post

	Use the data directory for in-workshop exercises and live coding examples. You can clone the shell-novice directory or use the Download ZIP button on the right to get the entire repository; we also now provide a zip file of the data directory that can be downloaded on its own from the repository by right-click + save. See the "Get Ready" box on the front page of the website for more details.



	Website: various practices have been used.

	Option 1: Can give links to learners before the lesson so they can follow along, catch up, and see exercises (particularly if you're following the lesson content without many changes).

	Option 2: Don't show the website to the learners during the lesson, as it can be distracting - students may read instead of listen, and having another window open is an additional cognitive load.

	In any case, make sure to point to website as a post-workshop reference.




	Content: Unless you have a truly generous amount of time (4+ hours), it is likely that you will not cover ALL the material in this lesson in a single half-day session. Plan ahead on what you might skip, what you really want to emphasize, etc.

	Exercises: Think in advance about how you might want to handle exercises during the lesson. How are you assigning them (website, slide, handout)? Do you want everyone to try it and then you show the solution? Have a learner show the solution? Have groups each do a different exercise and present their solutions?

	reference.md can be printed out and given to students as a reference, your choice.

	Other preparation: Feel free to add your own examples or side comments, but know that it shouldn't be necessary - the topics and commands can be taught as given on the lesson pages! If you think there is a place where the lesson is lacking, feel free to raise an issue or submit a pull request.




	Setup:

	Run tools/gen-nene.py to regenerate random data files if needed (some are already in the filesystem directory).

	Run tools/gen-sequence.py to regenerate random sequence data if needed.




	Have learners open a shell and then do whoami, pwd, and ls. Then have them create a directory called workshop and cd into it, so that everything else they do during the lesson is unlikely to harm whatever files they already have.


	Get them to run an editor and save a file in their workshop directory as early as possible. Doing this is usually the biggest stumbling block during the entire lesson: many will try to run the same editor as the instructor (which may leave them trapped in the awful nether hell that is Vim), or will not know how to navigate to the right directory to save their file, or will run a word processor rather than a plain text editor. The quickest way past these problems is to have more knowledgeable learners help those who need it.


	Tab completion sounds like a small thing: it isn't. Re-running old commands using !123 or !wc isn't a small thing either, and neither are wildcard expansion and for loops. Each one is an opportunity to repeat one of the big ideas of Software Carpentry: if the computer can repeat it, some programmer somewhere will almost certainly have built some way for the computer to repeat it.


	Building up a pipeline with four or five stages, then putting it in a shell script for re-use and calling that script inside a for loop, is a great opportunity to show how "seven plus or minus two" connects to programming. Once we have figured out how to do something moderately complicated, we make it re-usable and give it a name so that it only takes up one slot in working memory rather than several. It is also a good opportunity to talk about exploratory programming: rather than designing a program up front, we can do a few useful things and then retroactively decide which are worth encapsulating for future re-use.


	If everything is going well, you can drive home the point that file extensions are essentially there to help computers (and human readers) understand file content and are not a requirement of files (covered briefly in Files and Directories). This can be done in the Pipes and Filters section by showing that you can redirect standard output to a file without the .txt extension (e.g., lengths), and that the resulting file is still a perfectly usable text file. Make the point that if double-clicked in the GUI, the computer will probably ask you what you want to do.


	We have to leave out many important things because of time constraints, including file permissions, job control, and SSH. If learners already understand the basic material, this can be covered instead using the online lessons as guidelines. These limitations also have follow-on consequences:


	It's hard to discuss #! (shebang) without first discussing permissions, which we don't do.


	Installing Bash and a reasonable set of Unix commands on Windows always involves some fiddling and frustration. Please see the latest set of installation guidelines for advice, and try it out yourself before teaching a class.


	On Windows, it appears that:

$ cd
$ cd Desktop


will always put someone on their desktop. Have them create the example directory for the shell exercises there so that they can find it easily and watch it evolve.


	Stay within POSIX-compliant commands, as all the teaching materials do. Your particular shell may have extensions beyond POSIX that are not available on other machines, especially the default OSX bash and Windows bash emulators. For example, POSIX ls does not have an --ignore= or -I option, and POSIX head takes -n 10 or -10, but not the long form of --lines=10.







Windows

Installing Bash and a reasonable set of Unix commands on Windows always involves some fiddling and frustration. Please see the latest set of installation guidelines for advice, and try it out yourself before teaching a class. Options we have explored include:


	msysGit (also called "Git Bash"),

	Cygwin,

	using a desktop virtual machine, and

	having learners connect to a remote Unix machine (typically a VM in the cloud).



Cygwin was the preferred option until mid-2013, but once we started teaching Git, msysGit proved to work better. Desktop virtual machines and cloud-based VMs work well for technically sophisticated learners, and can reduce installation and configuration at the start of the workshop, but:


	they don't work well on underpowered machines,

	they're confusing for novices (because simple things like copy and paste work differently),

	learners leave the workshop without a working environment on their operating system of choice, and

	learners may show up without having downloaded the VM or the wireless will go down (or become congested) during the lesson.



Whatever you use, please test it yourself on a Windows machine before your workshop: things may always have changed behind your back since your last workshop. And please also make use of our Windows setup helper.







Licenses


Instructional Material

All Software Carpentry instructional material is made available under the Creative Commons Attribution license. The following is a human-readable summary of (and not a substitute for) the full legal text of the CC BY 4.0 license.

You are free:


	to Share---copy and redistribute the material in any medium or format

	to Adapt---remix, transform, and build upon the material



for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:


	Attribution---You must give appropriate credit (mentioning that your work is derived from work that is Copyright © Software Carpentry and, where practical, linking to http://software-carpentry.org/), provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.



No additional restrictions---You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. With the understanding that:

Notices:


	You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

	No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.






Software

Except where otherwise noted, the example programs and other software provided by Software Carpentry are made available under the OSI-approved MIT license.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.




Trademark

"Software Carpentry" and the Software Carpentry logo are registered trademarks of NumFOCUS.
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